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Abstract
Poor trust calibration in autonomous vehicles often de-
grades total system performance in safety or efficiency.
Existing studies have primarily examined the importance
of system transparency of autonomous systems to maintain
proper trust calibration, with little emphasis on how to detect
over-trust and under-trust nor how to recover from them.
With the goal of addressing these research gaps, we first
provide a framework to detect a calibration status on the
basis of the user’s behavior of reliance. We then propose
a new concept with cognitive cues called trust calibration
cues (TCCs) to trigger the user to quickly restore appro-
priate trust calibration. With our framework and TCCs, a
novel method of adaptive trust calibration is explored in this
study. We will evaluate our framework and examine the ef-
fectiveness of TCCs with a newly developed online drone
simulator.
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Introduction
Unmanned autonomous vehicle services supervised by
human operators are receiving increased attention. Applica-
tions of such vehicles includes driver-less shuttles (Figure
1) to transport people at school campuses or office parks
and unmanned aerial vehicles for aerial images, delivery,
and military purposes. Until perfectly automated technolo-
gies are realized, human interventions are inevitable. One
key aspect of such interventions is the operators’ trust in
the autonomous agent. While the agent’s reliability can
change due to various reasons in the vehicle’s environment,
the operators sometimes fail to calibrate their trust in the
agent accordingly and will fall into the category of over-trust
or under-trust. The poor trust calibration often leads to seri-
ous safety issues [19].

Figure 1: Driver-less shuttle
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Figure 2: Over- and under-trust

Trust Calibration
Calibration of trust has been defined as "the correspon-
dence between the person’s trust in the agent and the
agent’s capabilities" [14]. When the well-calibrated trust
is achieved without any over-trust or under-trust, the total
human-agent performance will be safely maximized. Exten-
sive research has been conducted examining the factors
that influence a human operator’s trust in automation [7, 10,
22]. Many studies [4, 15] have emphasized the importance
of system transparency to maintain proper trust calibration.
Studies on visualizing car uncertainty during automated
driving [8, 11] have indicated that providing good trans-
parency by constantly presenting the system information
is important to maintain continuous trust calibration. Nev-
ertheless, there is still a possibility of poor trust calibration
resulting in over-trust or under-trust. Yanco et al. [21] pro-
posed a model to measure the evolution of trust over the
use of a system. Few studies, however, have focused on
how to detect if the calibration is appropriate or not, how to
swiftly recover from over-trust or under-trust.

Adaptive Trust Calibration
This study will focus on the problem of over-trust or under-
trust by exploring the following two research questions;1)
Can we detect if the user is over-trusting or under-trusting
the agent ? and 2) How can we assist the user to promptly
recover from over-trust or under-trust ?

1) A Framework to Detect Over-trust and Under-trust
We propose a framework to detect the status of the trust
calibration on the basis of the reliance behavior of the user.
Suppose we have a scenario of human-agent collaboration,
in which a set of tasks needs to be done manually by a user
or automatically by an agent. The user should make suc-
cessive decisions whether to rely on the agent or do each
task manually. In our framework, three parameters Pauto,
Ptrust, and Pself are defined as follows:

• Pauto: Probability of the successful result of the task
done by the agent. This is called "reliability of the agent.".

• Ptrust: User’s estimation of Pauto. This is the user’s trust
in the agent.

• Pself : User’s self-confidence. This is the trust the user
has in their own ability to perform the task manually.

Pauto varies depending on the various conditions of the
agent. Ptrust also changes accordingly and quickly be-
comes equal to Pauto if trust calibration is performed appro-
priately. As in Figure 2, over-trust occurs if Ptrust > Pauto,
and under-trust occurs if Ptrust < Pauto. Although these are
straightforward definitions, it is difficult to measure Ptrust

without explicitly asking the user, since it is conceptually de-
fined by describing the internal state of the user. To make
the status of trust calibration measurable, we define over-
trust and under-trust using the third parameter Pself in ad-
dition to Ptrust and Pauto as follows:
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Over-trust: the user’s estimation of the agent reliability is
higher than the user’s self-confidence even though
the actual reliability is lower than the self-confidence.

(Ptrust > Pself ) ∧ (Pself > Pauto) (1)

Under-trust: the user’s estimation of the agent reliability is
lower than the user’s self-confidence even though the
actual reliability is higher than the self-confidence.

(Ptrust < Pself ) ∧ (Pself < Pauto) (2)
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Figure 3: Possible TCCs

Visual-sign TCC
A red warning sign in
the shape of reverse
triangle [1].

Audible TCC
Sound-based artificial
subtle expression [9],
which can convey the
confidence level of the
agent.

Anthropomorphic TCC
A drone animation with
a cartoon-like face parts
(See Figure 6) to show
the agent’s state.

Verbal TCC
A warning text message
displayed as a tooltip
when the Yes button is
selected.

Table 1: 4 TCCs to be evaluated
in our experiment

Several studies [5, 6, 22] demonstrated that the reliance
behavior can be explained by the relationship of the user’s
trust in the agents and the user’s self-confidence. When
the user makes a decision to rely on an agent, it is reason-
able to say that this behavior indicates Ptrust > Pself .
If the user decides not to rely on the agent but to do the
task manually, that indicates Ptrust < Pself . In this
way, by observing the user’s reliance behavior, the trust
calibration status can be measured, if the sign of the value
Pself − Pauto can be estimated. While [9, 20] have inves-
tigated gaze behavior as a trust measure which seems to
be versatile, we focus on the reliance behavior because it is
much easier to monitor and valid for our current target.

2) Trust Calibration Cues for a Prompt Recovery
The recovery from over-trust or under-trust is inherently dif-
ficult because the user’s decision is based on what is just
recognized, which the user believes is reasonable. In this
study, we will explore a new idea of giving a cognitive cue
to the user when over-trust or under-trust is detected. This
cue is expected to trigger the user to promptly notice what
has been happening in the environment and to calibrate the
trust on the basis of the new findings. We call this cognitive
cue a “trust calibration cue" (TCC). Based on the findings
from the studies on trust [3, 4, 12] as well as the research
on warning messages [1, 13], we have categorized possible
TCCs into two axes (Figure 3); one is from intuitiveness to

logical and the other is from mechanical to anthropomor-
phic. Table 1 shows the four specific TCCs to be evaluated
in our upcoming experiment. We expect that Audible TCC
and Visual-sign TCC are to be intuitive, Anthropomorphic
TCC is to be familiar, and Verbal TCC is to be used as a
baseline in a control group. These TCCs will be evaluated
in terms of time sensitivity [16] and accuracy of the calibra-
tions.

Experiment Setup
Scenario
We have designed an experimental scenario of a super-
vised drone, which can automatically detect potholes on
road surfaces with its onboard camera. A participant of the
experiment is asked to fly the drone along a predefined
route toward a goal. The drone will occasionally make re-
ports on potholes and the participant should make deci-
sions whether to rely on the drone’s automatic report or to
manually check the road image, because the reliability of
the drone’s pothole detection can fluctuate depending upon
the conditions of weather and sunshine.

Simulation Testbed
We have developed a 3D drone simulator based on an
open-source JavaScript WebGL library CesiumJS [2] and
Bing Map API [17]. A screen image of the simulator is shown
in Figure 4. The left-hand pane of the screen displays the
on-board camera image, and the right-hand pane shows a
3D drone on the navigation map with flight indicators. If the
drone comes close enough to one of the predefined points
on the route, a message pops up (Figure 5) in which the
drone notifies the participant if there are any road potholes
within the area around the checkpoint. The participants
need to select Yes to accept the report or No to check the
image by themselves. All the actions of the participants are
recorded with timestamps.
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Figure 4: A screen capture of the 3D drone simulator
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Assumptions
We assume Pauto can be calculated on the basis of the in-
ternal sensor’s sensitivity. Since the robustness of human
image recognition is higher than that of the agent’s recog-
nition, Pauto would fluctuate more widely than Pself with
changes in the weather conditions. These assumptions
make it possible to estimate the sign of Pself − Pauto.

Procedure
60 participants on the web are invited to fly a drone over a
20-km route in a rural area in Hokkaido, Japan, along Na-
tional Route 12. The experiment will be performed in the
following three phases. In Phase 1, the participants learn
to use the drone simulator. They are explicitly told that the
average success rate of manual pothole detection is 75%,
so that they can adjust their initial self-confidence Pself

accordingly. Next, in Phase 2, all participants are inten-
tionally trained to strongly trust the drone at a reliability of
Pauto=100%, since we focus on the over-trust issue in this
experiment. After the manipulation checks of Ptrust and
Pself , Phase 3, the main part of the experiment, is per-
formed. The participants are divided into the four groups
corresponding to one of the TCCs described in Table 1. The

Pauto is artificially decreased from 100% to 50%, which
changes the sign of Pself − Pauto. The participants are
expected to become over-trusting the drone. If the partic-
ipants select Yes on the pop-up notification windows, the
chi-square frequency test is used to determine if the counts
of the observed behavior significantly differ from the one
that we would expect by chance. If this test passes, the
participants are judged to be in the over-trust status. Right
after the detection, the corresponding TCC is presented
in each group. In each experiment, the drone will make 30
reports regarding checkpoints randomly selected from 63
predefined ones on the route. After finishing Phase 3, par-
ticipants will be asked to complete a trust survey. We will
evaluate the effectiveness of our framework with the detec-
tion results in the first half of Phase 3, and examine how
TCCs influence the reliance behaviors in the last half of
Phase 3. The independent variable is a TCC with four lev-
els, and the dependent variable is the selection behavior.

Conclusion
The experiment will be performed soon using Yahoo cloud
sourcing. By examining our proposed adaptive trust calibra-
tion with the drone experiment, we hope to clarify what is
necessary to quickly recover from the situations that result
from poor trust calibration. Although there are many as-
sumptions made, we still believe the finding of this study will
contribute to better user-interface designs for supervised
autonomous vehicles. We also expect that further investi-
gation on other important factors [18] in autonomous driv-
ing, such as reliance behaviors of drivers with non-driving-
related activities, will help to enhance our framework to be
applicable to autonomous vehicle in general.
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