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Introduction

PRVAs, product recommendation virtual agents, are agents
that are designed for virtual clerks in online shopping.
Prendinger et al. investigated the effect of virtual clerks by
eye tracking analysis (Prendinger, Ma, & Ishizuka, 2007).
In their experiment, participants were introduced real estate
properties by text, speech, and an animated agent. They
showed that the agent’s use of deictic gestures had the effect
of attracting a participant’s gaze. Terada et al. studied what
appearance was the most suitable for PRVAs (Terada, Jing, &
Yamada, 2015). They showed that one of the most effective
appearances were dog, robot, and young woman. In this pa-
per, we investigated the effect of PRVA’s emotion transition
to user’s gaze by eye tracking analysis.

A Markov chain model is widely used for constructing a
model of eye tracking transition. Liechty et al. showed local
and global covert visual attention by adapting a Bayesian hid-
den Markov model (Liechty, Pieters, & Wedel, 2003). He et
al. suggested investigating hidden user behaviors that occur
when a user is using a search site by using a partially ob-
servable Markov model with duration (POMD) (He & Wang,
2011). This model is derived from the hidden Markov model
(HMM). The difference was that POMD contained a partially
observable event. He et al. suggested that only seeing without
clicking links was the hidden user behavior.

In this paper, our goal was to improve the PRVA de-
sign methodology by analyzing user eye-tracking data. We
focused on transition-based analysis. In prior research on
human-agent interaction, eye-tracking data were mainly an-
alyzed on the basis of fixation durations. This is the most
important method in this paper.

Markov chain

In our research, we used the Markov chain model for ana-
lyzing the fixation transitions between areas of interest (AOI
sequence). The Markov chain satisfies the following equa-
tion, where X, is a random variable and n means time step
(Brooks, Gelman, Jones, & Meng, 2011).
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In this research, our goal was to compare the transition en-
tropy and the stationary entropy of the AOI sequence

Experiment
Participants

Fifteen Japanese participants joined in the experiment. There
was eight males and seven females, and they were aged be-
tween 20 and 39, for an average of 29.3 (SD = 6.9). Due to
not getting sufficient gaze data, we omitted the data of one
male participant.

Task

The PRVA recommended 10 package tours to Japanese cas-
tles. These castles were built in the Japanese Middle Ages,
from about the 13th to 16th century. The PRVA made recom-
mendations successively, and the recommendation order was
random. For the first half of the recommendations, the PRVA
kept a poker face without making any gestures. We defined
this agent as the apathy agent. In the latter half, the PRVA
smiled and made cute gestures. We defined this agent as the
positive agent. This change in facial expressions and gestures
expressed the agent’s emotion transition, and we aimed for
the agent’s positive emotion to infect participants.

The PRVAs were executed with MMDAgent!. This is a
free toolkit for constructing agent systems with speech. It
contains the agent character “Mei” and is distributed by the
Nagoya Institute of Technology. We also used the text to
speech software VOCELOID+ Yuduki Yulari EX2? for the
agent’s voice.

Apparatus

We carried out experiments with Tobii Pro X2-60 and a 30-
inch LCD monitor (1920 x 1200 resolution). Eye move-
ments were recorded at a 60-Hz sampling rate. All partici-
pants were requested to sit down in a chair at a 60-cm dis-
tance from the monitor during the experiment. All stimuli

Thttp://www.mmdagent.jp/
Zhttp://www.ah-soft.com/voiceroid/yukari/



Figure 1: Defined AOIs

were presented on the monitor, and all participants listened to
the recommendations with headphones. To construct a transi-
tion matrix and stationary distribution, we used the R package
“markovchain” (Spedicato, Kang, & Yalamanchi, n.d.).

Analysis method

We defined the AOIs as shown in Figure 1. We divided the
presented stimuli area into five areas (“background,” “body,”
“face,” “image,” and “text”). We analyzed based on the fixa-
tion order. Fixation order meant the path of a participant’s fix-
ations, and we counted the number of transitions of the AOIs
that the participants fixed on (including self transitions). We
constructed the transition matrix and stationary distribution
from this analysis. The minimum fixation duration was 60

ms, and transition advanced one step when fixation occurred.

Results

We constructed the transition matrix and stationary distribu-
tion from the fixation order of the first half of the recommen-
dations. We calculated each transition matrix from each rec-
ommendation. We got 10 transition matrices from one partic-
ipant and got 140 transition matrices in total. We calculated
the average of all matrix elements. This was for the “transi-
tion matrix derived apathy agent”.

Also, we calculated the stationary distribution from this
matrix. This was for the “stationary distribution derived ap-
athy agent” (1, = (0.22,0.11,0.05,0.26,0.37)). On the ma-
trix, each coordinate means these AOIs: 1 = “background,”
2 = “body,” 3 = “face,” 4 = “image,” and 5 = “text.” In the
stationary distribution, the same coordinate means the same
AOL.

We constructed the transition matrix and stationary dis-
tribution from the latter half of the recommendations in the
same way. These were for the “transition matrix derived
positive agent” and “‘stationary distribution derived agent”
(mp = (0.22,0.16,0.098,0.21,0.31)). The same coordinate
means the same AOI in Tt,.
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Discussion

From 7, and m,, we can find few definite differences. The
most different element was p3 between these two matrices.
In 7, this means 0.05, and in 7, this means0.098. This coor-
dinate means the percentage of probability that fixation tran-
sitions to “face” when the fixation is on “face” one time-step
before. This shows that implementing the positive emotion
caused participants’ fixations to stay on the agent’s face. This
phenomenon proves that the participants felt more human-
likeness with the agent (Strait, Vujovic, Floerke, Scheutz, &
Urry, 2015).

Conclusion

There is demand for PRVAs that have the ability to attract
a user’s attention to products or to themselves. This can be
rephrased as the ability to attract and keep a user’s fixation on
the images of products or agents. We investigated the effect
of implementing a positive emotion in a PRVA by analyz-
ing eye-tracking and aimed to adapt the result to the model
of designing PRVAs that attract a user’s fixation. From our
experiment, a positive emotion attracted participants’ gaze to
the agent’s face. This suggest a methodology of attracting or
keeping a user’s gaze and buying motivations.
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