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Abstract— The use of mobile devices that utilize touch panels
as interfaces, such as smartphones and tablet PCs, has spread
in recent years, and these have many advantages. For example,
panels can be operated more intuitively than those with conven-
tional physical buttons, and the devices are much more flexible
than those that use traditional fixed Uls. However, mistakes
frequently occur when inputting with a touch panel because
the buttons have no physical boundaries and users cannot get
tactile feedback from their fingers. Thus, the input accuracy of
touch-panel devices is lower than that of devices with physical
buttons. There have been studies on improving input accuracy.
Most of them have used language models for typing natural
language or probabilistic models to describe the errors made
when users tap panels with their fingers. However, these models
are not practical because they deal with kinematic errors, not
cognitive errors. Thus, we propose a more practical model for
improving input accuracy in this paper, in which the tap model
includes cognitive errors to avoid tapping neighboring objects
to a target object. We consider that our model can describe
important properties for designing various Uls depending on
practical applications. We also conducted experiments to build
our model in a calibrated way and discussed our evaluation of
the model and revision of the model.

I. INTRODUCTION

The use of mobile devices that use touch panels as
interfaces, such as smartphones and tablet PCs, has spread
in recent years, and these have many advantages. The panels
can be operated more intuitively than conventional physical
buttons, and the devices are much more flexible than those
that use traditional fixed Uls, e.g. a forcetap-sensitive ap-
proach [6] and touch-based direct manipulation [10].

However, mistakes frequently occur when inputting with
touch panels because the buttons have no physical boundaries
and users cannot obtain tactile (physical) feedback because
the panels never physically change when they are being
tapped [9] [Figure 1(a)]. Thus, the input accuracy of touch-
panel devices is significantly lower than those using conven-
tional physical buttons [Figure 1(b)]. In addition, users often
make unintentional mistakes when using the panels for input.
In particular, mobile devices like smartphones usually have
a smaller screen and smaller Uls than conventional large Uls
on a computer display. Thus, the lack of high input accuracy
is serious, and this problem with using small screens for
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Fig. 1. Software keyboard on smartphone and hardware keyboard.

input is called the fat finger problem [13] (Figure 2). This
is a problem with accuracy in pointing manipulation. Input
devices will progress in the future, and the pointing accuracy
becomes more important. Thus, it is important to improve
this accuracy for various practical applications of touch
panels.

There have been many studies on improving the accuracy
of software keyboards [Figure 1(a)]. Software keyboards
need to have a lot of keys to be placed in a small area
to accommodate small screen sizes, especially on mobile
devices like smartphones and tablet PCs. Hence, this is a
typical example of the fat finger problem (Figure 2) because
the keys are too small for users to correctly tap them.
Most of these studies used two approaches. The first uses
language models [4], [1], which have language information
such as that from dictionaries. The system can predict the
next character by using the pattern of input characters and
dictionaries. For example, when the first part of a word is
input, the system can predict the next character by matching
the input part with words recorded in a dictionary. Although
this approach is quite effective for key-typing like that when
tapping a software keyboard, it cannot be applied to other
input Uls, including tapping on simple buttons that are not
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Fig. 2.

Fat finger problem.

on a software keyboard. Thus, as the applicable coverage
of these models has been significantly restricted to inputting
natural language described in dictionary, we need to develop
more general models to improve input accuracy for various
concrete Uls.

The second approach uses tap models [2], [7] that have
information on the difference between the locations of but-
tons and the points where users tap the keyboard. The system
revises the location of points on the screen panel by using the
tap models. There have also been studies that have combined
both approaches [5], [12], [3].

A more general tap model [14] personalized for individual
users was proposed. The model was defined on a continuous
-y coordination of a 2D tap screen and can be personalized
by using Gaussian process regression as a quick regression
algorithm with a small number of training examples. Also,
the learned tap models are utilized for revising the actual tap
point to the real target point. Experimental evaluations were
done with participants. The main factor of this tap model
was considered to be user kinematics because the errors
significantly depended on the user’s hand used for tapping.
Thus, we call such errors kinematics error as mentioned later.

The first approach is concerned with reducing a sig-
nificant gap between a software keyboard and a physical
keyboard [9]. Although a physical keyboard key has three
states (touched, pressed, and released), a software keyboard
usually has only two (touched and released). Due to this
difference, the state corresponding to the touched state of a
physical key is missing in a touch screen keyboard. TapBoard
is a touch screen software keyboard that regards tapping
actions as keystrokes and other touches as the touched state.
Thus, TapBoard can significantly reduce the gap between
pressing keys on a physical keyboard and tapping a software
keyboard.

There have been fundamental studies in which limited
and concrete applications to practical Uls have not been
assumed [8], [14]. Although these studies might provide
novel knowledge in terms of general aspects, it is very dif-
ficult to use this knowledge to design Uls in practice. Thus,
these models are not practical, and the experiments were in
impractical environments. This means that the models may
have been influenced by more complex factors such as the
layouts or colors of the interface.

Thus, we focused on a method in this study that predicts

touch points from multiple sensors that was proposed by
Weir et al. [14] as mentioned before. Also, it is very
important that we propose a more practical model called a
cognitive error model that includes the influence of neighbor-
ing objects, e.g., buttons and links. We think that this model
is necessary to actually design a Ul on a tap screen because
the tapping environment with other tapping targets is quite
more practical than that without them.

II. METHOD OF ESTIMATING TAP POINTS WITH
MULTIPLE SENSORS

The following method was proposed in the previous stud-
ies [14]. Let s be the input of multiple sensors and (z,y)
be the intended location of a user. Here, multiple sensors
mean the output of the touch panel, e.g., location, time, size
of area, and pressure, and accelerometer. Then, the sensors
calculate the function (z,y) = f(s) by regression, and the
system estimates the intended location from the sensor input
by f.

Next, we extend this touch model to one with cognitive
errors that is more practical by introducing the relationship
between a target object and a neighboring object. Further-
more, we try to introduce incremental learning to improve
the model through user execution of the UL

A. Influence of Interface Layout on Tap Model

A tap location in practical use changes with various fac-
tors. It is particularly known that the tap model significantly
changes with the differences in how a device is held and
how the fingers operate it. We call this difference in tapping
points kinematic error (ey). This influence may be solved
by estimating these factors with sensors like acceleration
Sensors.

However, the tap model may change with the interface
layout. Let the blue squares be a target in Figure 3. The actual
tap location has a distribution like the blue line (a), where
a Gaussian distribution is assumed for the touch model. The
actual tap distribution slightly shifts to the right because of
the device is being grasped with the right hand. If there is
another object (the green square) on the right, the distribution
will move to the left because the user is aware of the
green square and tries to avoid mistouching the green square
instead of the blue square. We call this difference in tap
points cognitive error (e.).

In addition, the position, size, color, or shape of the object
might have an influence.

No previous studies have considered this kind of influence
because sensor inputs s do not include this information.
Therefore, we propose adding an interface layout I as an
input variable of f. We consider that this information will
make a touch model much more practical. Since our touch
model with an interface layout is basically characterized with
(z,y) coordination on a touch panel, it can be applied to
various Uls independent of the properties of tappable objects
like buttons and icons. Thus, this model has a wide coverage
that can be applied the same as conventional touch models.
Furthermore, this proposed touch model is very practical
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Fig. 3. Tap target and tap location.

and precise because it effectively introduces the influence
of neighboring objects in contrast with conventional touch
models [8], [14].

Thus, we can summarize the proposed tap model in a
simple way like the following equation.

(‘Tay):f(&l):ek"’ec ()

Since we assume that e, influences the tap model as well
as ey, we need to confirm the e, through experiments with
participants. In the next section, we conduct an experiment
to confirm the e, and to show that our extended tap model
is more practical.

III. EXPERIMENT

We conducted an experiment to obtain a large number of
training data for confirming e. and evaluating the accuracy
of our touch model.

A. Method

We developed a method of implicitly obtaining training
data to evaluate the influence the interface layout had on
the tap model. Participants were asked to perform a task
in which they tapped a marker on a touch panel. Figure
5 outlines the task windows. The marker disappeared, and
others appeared in other positions when the markers were
tapped. No marker disappeared until tapped. The target
marker that a participant should tap had a white circle in the
center, and various neighboring markers appeared around it.
We instructed participants to tap a target marker as quickly
as possible.

The target marker was 3 x 3 mm in size. Neighboring
markers appeared as shown in Figure 5(b) ~ 5(d). The
distance between markers was 1 mm. All parameters and
sensed information of taps were recorded and considered.

We randomly obtained a sufficient number of markers for
our proposed model. The experimental environment with a
participant is shown in Figure 4.

Fig. 4. Experimental environment.

B. Participants

We recruited 10 participants (five males, five females,
ages 23 - 54). The group consisted of graduate students and
staff members from the computer engineering department
of our university and institute. Eight of the participants use
smartphones every day, and the remaining two do not.

C. Evaluation

We investigated the two measures to confirm the practical-
ity of e, and to evaluate the effectiveness of our extended tap
model consisting of e, and e.. We evaluated the difference
in tap locations due to the existence of neighboring markers.

D. Results

Figure 6 shows the kinematic error (e ) for the horizontal
and vertical axes. The curve was estimated from Gaussian
process regression (GPR) [11]. Here, the squares mean the
display. For (a) horizontal error, the color shows how much
the error shifted to the left side (a unit is a pixel) for each
point on the display. The maximum error (white areas) was
about 3 mm, and the minimum error (green areas) was about
1 mm. For (b) vertical error, the color shows how much the
error shifted to the upper side (a unit is a pixel) for each
point on the display. The maximum error (white areas) was
about 1 mm, and the minimum error (green areas) was about
-1 mm.

Figure 7 and Figure 8 plot the cognitive error (e.) for both
axes and shows patterns having the biggest error. Figure 7
shows average of error for each pattern. Figure 8 shows the
model using GPR. Here, we used data that only had one
neighboring marker, and the effect of e, was eliminated.

IV. DISCUSSION
A. Tap Model

Figure 6 shows that the tap points shifted to the sides that
were closest to the hands and the gaps in the points away
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(c) Two neighboring markers. (d) Eight neighboring markers.

Fig. 5. Task windows.

from these sides were larger than the gaps between nearer
points. These features have the same tendencies as those in
previous work [8], [14].

Figure ?? shows that the tapping points shifted to the right
when neighboring markers were on the left, shifted to the left
when neighboring markers were on the right, shifted up when
a neighboring marker was below, and shifted below when
an additional marker was aboce. These shifts significantly
supported the existence of e., and by using e, our extended
model described in eq(l) can predict tapping errors more
precisely than the conventional tap model without e..

We consider that we can synthesize various patterns with
a single neighboring marker to predict errors in all types of
cognitive errors. However, developing a concrete procedure
for computing this is our future work.

B. Application to Real Uls

We should consider applying our method to real Uls. The
system knows the tap point at execution and the current
button layout. Therefore, the system should have data on
errors in a button layout relative to a tap point. In other
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Fig. 6. Tapping points vs. kinematic errors for both axes.

words, the system should estimate the point a user desired
to tap from a tap point and the relative button layout. Here,
we think that the influence of neighbor markers is very small
when neighbor markers are far. Therefore, only the closest
marker will be considered for now.

Figure 9 shows examples of real Uls and how to apply
our method. Figure 9(a) shows pieces of anchor text on a
screen. There are other buttons arranged horizontally above
and below. These buttons resemble three markers in our
experiment. Figure 9(b) shows buttons in a grid pattern. This
pattern resemble eight markers in our experiment.

The patterns used in our experiment were very limited.
There are many other parameters such as the space between
objects, the size of objects, the color of objects, and the
shapes of objects. We should consider these.

V. CONCLUSION

We considered that our tapping model could describe
important properties in designing various Uls depending
on practical applications in this study. We conducted an
experiment to build it in a calibrated way and discussed
its evaluation. Although the results suggested that cognitive
error existed, we intend to do additional experiments and
evaluate our model more thoroughly in future studies.
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