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Abstract—Constrained Clustering is a framework of im-
proving clustering performance by using a set of constraints
about data pairs. Since performance of constrained clustering
depends on a set of constraints to use, we need a method to
select good constraints that are expected to promote clustering
performance. In this paper, we propose such a method, which
actively selects data pairs to be constrained by using variance
of clustering iteration. This method consists of a boosting
based cluster ensemble algorithm that integrates a set of
clusters produced by a constrained k-means with controlled
data assignment order. Experimental results show that our
method outperforms clustering with random sampling method.
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I. INTRODUCTION

Clustering is a basic data mining technique to find similar

data groups in a dataset. We can execute clustering algo-

rithms by giving feature vectors and a similarity measure.

However, it sometimes happens that similarity measure does

not fit the target dataset and get unsatisfied results.
Constrained clustering [1], [2] can be applied to such a

situation. It is a kind of semi-supervised learning technique

that utilizes labeled and unlabeled data to enhance learning

performance. Constrained clustering is different from normal

clustering in the use of background knowledge that is given

in the form of constraints about data pairs. Such constraints

have two kinds, usually called must-link and cannot-link

constraints. The former is constraints about data pairs that

must be in a same cluster, while the latter ones is about

data pairs that must be in different clusters. According to this

framework, users can modify or fix the problem of pre-given

similarity measure by giving such constraints. For example,

interactive image segmentation [3], [4] is a typical task

for constrained clustering. Depending on the segmentation

performance, users can give appropriate constraints to get

better results.
Although there have been proposed several constrained

clustering methods [5], [6], [7], [8], we have some problems

in preparing constraints. One problem is the efficiency

of the process. Because constraints must be labeled as

“must-link” or “cannot-link” manually by human, his/her

cognitive cost seems very high. We need support to help

users reduce such operation cost. The other problem is the

effectiveness of the prepared constraints. Many experimental

results in recent studies have shown clustering performance

does not monotonically improve (sometimes deteriorates) as

the number of applied constraints increases. The degree of

performance improvement relies on the quality of constraints

rather than the amount. These results imply that constraints

are not all useful, some are effective but some are not

effective or even harmful to clustering. We also need support

to help users select only effective constraints that improve

clustering performance. These problems can be resolved by

the framework of active learning that automatically selects

constraint candidates expected to be useful.

In this paper, we propose an active learning method to se-

lect a data pair as a constraint candidate that is expected to be

useful if true constraint label (must/cannot-link) is given. We

realize an uncertainty sampling based active learning method

on a constrained cluster ensemble algorithm that integrates

a sequence of clustering results produced by constrained k-

means using boosting framework. The cluster ensemble is

based on a boosting [9] framework with a constrained k-

means algorithm. Controlling the priorities of constraints by

boosting, the constrained k-means that is a modified version

of COP-Kmeans [10] produces the variation of clustering

results by changing the data assignment order.

We exploits this variation to measure the uncertainty for

a data pair to be must-link or cannot-link. It is well known

that “uncertainty” is one of major criteria for active learning

[11] to select candidates of training data. This is generally

called uncertainty sampling [12]. In this research, we need

uncertain data pairs that are expected to be useful to improve

clustering performance if they are used as constraints. We

calculate the uncertainty using two measurements. One is

the number that a data pair belongs to the same or different

cluster during cluster ensemble process. The other is the

kernel value that is produce for a data pair by boosting

process. We expect that constraints selected by using uncer-

tainty sampling are more effective than constraints selected

at random.

The rest of this paper is organized as follows. We first

introduce our basic constrained cluster ensemble algorithm

with boosting and constrained k-means in Section II. Then
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Figure 1. Constrained Cluster Ensemble

we propose our uncertainty sampling based active learning

method for constrained clustering in Section III. Section

IV presents the results of the experiments on six datasets

from UCI repository and public shape datasets. We finally

conclude our work in Section V.

II. CONSTRAINED CLUSTER ENSEMBLE

In this section, we briefly explain a constrained clustering

algorithm on which we consider active learning.

The constrained clustering algorithm is based on a cluster

ensemble approach, where a certain number of slightly or

significantly different clustering results are integrated into

a set of clusters. One of the important things in cluster

ensemble is how to create such difference. While there are so

many mechanisms to produce different patterns of clustering,

we adopt a boosting based method [13] that is appropriate

for our “constrained” cluster ensemble.

This method is based on a boosting technique and a

constrained k-means algorithm. Boosting is one of the

ensemble learning techniques used to produce a classifier

by integrating weak hypotheses generated by a weak learner

that outperforms random classifiers to some extent. The

boosting process mainly follows the AdaBoost algorithm[9],

which is a well-known framework to enhance the classifier

ability by flexibly changing the weights of the training

data. Figure 1 illustrates how our clustering algorithm works

according to the AdaBoost procedure. Although we normally

use boosting for classification learning that is different from

constrained clustering, we can naturally apply by finding

correspondences as follows.

• Weak Learner → Constrained k-means

• Training data → Constraints (must/cannot-link)

• Weights for training data → Weights for constraints.

Once given a set of constraints, the constrained k-means

algorithm that works as a weak learner for the boosting

runs and produces a clustering result. The clustering result

produced in each boosting step is transformed into a kernel

matrix Kt. Each element of this kernel matrix indicates

whether or not the corresponding data pair belongs to the
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Figure 2. Constrained K-means

same cluster. Thus, the kernel matrix represents the link

connections of the clusters. From the point of a weak

learner, the constrained k-means predicts the existence of

the link between any data pair in the clusters using the

constraints as a set of training data. The kernel matrix is an

aggregation of these predictions. As boosting step goes on,

constrained k-means produces different clustering results.

They are finally summed up as a kernel matrix with their

importance values αt that are calculated by using the error

rate of the constraints satisfaction in each boosting step. The

final clustering result is generated using this final kernel

matrix.

Another important role of the boosting framework is to

give a priority wt
n to each constraint. The priority wt+1

n for

nth constraint at t + 1th boosting step is calculated by the

following formula.

wt+1
n = wt

n exp(−αtynKt(in, jn))

where yn is the label for nth constraint and Kt(in, jn)) is the

kernel value for nth constraint. The constraints that are not

satisfied by the weak learner will be given higher priorities

in order to be satisfied in the next round. These priorities are

used to control the data assignment order in the constrained

k-means. The constraints with higher priorities will be

satisfied earlier than those with low priorities. The priority

calculation can be dealt with by changing the coefficients of

the loss function in the boosting.

Figure 2 illustrates how constrained k-means uses the

priorities for constraints. The constrained k-means algorithm

is developed from the COP-Kmeans [10] by modifying

to make work as a weak learner for constrained cluster

ensemble. Although it follows the basic procedure of the

standard k-means algorithm that assigns data to its nearest

cluster center, its assignment process is rather complicated

since we must consider the weight of constraints. There are
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Figure 3. Variability of the Clustering Results

mainly two parts to the assignment processes, which consists

of the procedure for the constrained and unconstrained data,

respectively. The latter one (for the unconstrained data)

remains the same as that in a normal k-means process.

What we need to consider is the process for the previous

one (for constrained data). We must take several cases like

those listed below into consideration. Our algorithm assigns

a constrained data pair at the same time. Since some data

contain several constraints, one (or both) of the data may

have already been assigned in some cases. We must prepare

procedures for such situations. Depending on the conditions,

we must prepare different procedures according to which

constraint the data pair has.

III. UNCERTAINTY SAMPLING FOR CONSTRAINED

CLUSTER ENSEMBLE

Based on the constrained cluster ensemble algorithm, we

consider active learning that tries to infer the most promising

constraint in terms of improving clustering performance the

best. In this section, we propose an active learning technique

that is based on the uncertainty sampling [12]. Uncertainty

sampling is based on a hypothesis that we should label the

data which is the most difficult to infer. According to the

hypothesis, we should label the data pair that is the most

difficult to infer that it is must or cannot-link. In order

to apply uncertainty sampling, we first have to decide the

criteria to quantify “uncertainty”. Our criteria is based on

two types of variability of the clustering results that are

produced during the boosting process.

The first criteria is the variability of the number that a

data pair belong to the same or different cluster during the

boosting process. As illustrated in Figure 3, the constrained

clustering algorithm introduced in previous section produces

a variety of clusters. It may occur that a data pair belongs

to the same cluster in a boosting step, but they do not in

another step. In this way, we can calculate probabilities that

a data pair belongs to the same cluster or not from the

boosting process. We measure the variability by calculating

the entropy for each data pair according to the probabilities

and use it as the first criteria of “uncertainty” to select

constraint candidates for future clustering. Let (xi, xj) be

a data pair and pij be a probability that they belongs to

a same cluster. We can calculate an entropy Eij for each

(xi, xj) as follows.

Eij = −pij log pij − (1− pij) log(1− pij) (1)

Here, pij can be estimated from the number of occurrence

that (xi, xj) belongs to the same cluster during boosting

steps 1 ∼ T . Once we can calculate entropies, we select

several data pairs that has higher values as constraint candi-

dates and give them constraint labels (must/cannot-link). We

consider a data pair that has high entropy value to be a good

candidate since its constraint label is difficult to predict.

The second criteria is the variability of the final kernel

value that is produced for a data pair in each boosting step.

As we described before, clustering results are transformed
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and integrated into a kernel matrix whose element indicates

the strength of the corresponding data pair is a must or

cannot-link. Thus if the kernel value is positively large, we

can infer it is must-link. In the same way, if the kernel

value is negatively large, we can infer it is cannot-link. On

the other hand, we can also consider whether a data pair

is must or cannot-link is uncertain if the absolute kernel

value is small. Since the final kernel value is the sum of

positive and negative values produced during each boosting

step, smallness of the absolute kernel value can be used as

a measurement of “uncertainty”.

Using above two types of measurement, we calculate the

value of uncertainty U as follows.

Uij = Eij/Kij (2)

where i and j means each index of a data pair, and K is a

kernel matrix. We calculate Uij for any unlabeled data pair

and select a data pair that has the largest value.

IV. EXPERIMENTS

A. Datasets

We evaluated our proposed method on six datasets. The

datasets are summarized in Table I. Iris, Glass, Ecoli, Wdbc

are from the UCI repository1 and Pathbased and Spiral are

from a public shape datasets for clustering 2. We rescaled

the range of attribute values of each data 3 in four datasets

from UCI repository to avoid negative effect of attribute

scale unbalance. For two shape datasets, we applied RBF

kernel with local scaling[14] because they are difficult to

be clustered in Euclidean space. We set 8 to the number of

nearest neighbors for local scaling.

B. Methods and Evaluation

We compared the following methods for constraint sam-

pling.

• ACTIVE: This is our proposed method, which selects

data pairs to be labeled using two types of “uncertainty”

measurement described in the previous section. Our

algorithm starts from 100 (randomly selected) source

constraints and repeats uncertainty sampling until it

gets 200 constraints. Since constrained clustering algo-

rithms generally need a certain number of constraints

to produce their effect, we starts from 100 souce

constraints. In each sampling step, it selects one data

pair to be labeled. We repeated this sampling process

and show the average score as the final results. The

number of maximum boosting steps T was set to 100.

• RANDOM: This method randomly selects data pairs

to be labeled. We repeated the sampling process and

1http://archive.ics.uci.edu/ml/
2http://cs.joensuu.fi/sipu/datasets/
3v′ =

v−min{v}
max{v}−min{v} (v′: rescaled attribute value)

Table I
DATASETS

No. of Data No. of Class No. of Attribute
Iris 150 3 4
Glass 214 6 10
Ecoli 336 8 7
Wdbc 569 2 30
Pathbased 300 3 2
Spiral 312 3 2

show the average score in a similar way as our active

method.

We used normalized mutual information (NMI) to mea-

sure the clustering accuracy. The NMI was calculated by

using the following formula.

NMI(C, T ) =
I(C, T )

√
H(C)H(T )

where C is the set of cluster labels returned by algorithms

and T is the set of true cluster labels. I(C, T ) is the mutual

information between C and T , and H(C) and H(T ) are the

entropies.

C. Results

Figure 4 shows the results of the datasets. In each graph,

horizontal axis indicates the number of constraints used for

constrained cluster ensemble, and vertical axis indicates the

NMI value.

As for UCI datasets, ACTIVE outperforms RANDOM

on Iris and Glass datasets. In Glass, the difference of

NMI expands as the number of constraints increases. For

other two datasets Ecoli and Wdbc, ACTIVE shows almost

comparable results even if it gets more constraints. Shape

datasets also showed similar results. ACTIVE is better than

RANDOM on Pathbased, but comparable on Spiral.

V. CONCLUSION

In this paper, we proposed an active learning method for

constrained clustering, which actively selects data pairs to

be constrained. Our active learning method is a realization

of uncertainty sampling on a constrained cluster ensemble

algorithm that integrates a sequence of clustering results

produced by constrained k-means using boosting framework.

We utilize the variability of the clustering results through

the cluster ensemble process to measure the uncertainty for

any data pair to be must or cannot-link. The uncertainty is

calculated by using two measurements. One is the number

that a data pair belongs to the same or different cluster during

cluster ensemble process. The other is the kernel value that

is produce for a data pair by boosting process.

Experimental results showed that our method outperforms

or is comparable to a random sampling method on six

datasets. Though the effectiveness depends on data and basic

performance of our cluster ensemble method, we verified

261260



 0

 0.2

 0.4

 0.6

 0.8

 1

 100  110  120  130  140  150  160  170  180  190  200

N
M

I

No. of constraints

ACTIVE

RANDOM

(a) Iris

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  110  120  130  140  150  160  170  180  190  200

N
M

I

No. of constraints

ACTIVE

RANDOM

(b) Glass

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  110  120  130  140  150  160  170  180  190  200

N
M

I

No. of constraints

ACTIVE

RANDOM

(c) Ecoli

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  110  120  130  140  150  160  170  180  190  200

N
M

I

No. of constraints

ACTIVE

RANDOM

(d) Wdbc

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  110  120  130  140  150  160  170  180  190  200

N
M

I

No. of constraints

ACTIVE

RANDOM

(e) Pathbased

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  110  120  130  140  150  160  170  180  190  200

N
M

I

No. of constraints

ACTIVE

RANDOM

(f) Spiral

Figure 4. Results

uncertainty sampling approach has potential to work well

on some datasets.

Since active learning for constrained clustering has not

been well developed, our method can be an option. We will

investigate the behavior of the method and test it on many

other datasets.
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