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Abstract— A user working at his/her desktop computer would
benefit from notifications being given at timings that reflect their
relevancy to the user’s activity and workload. To do so correctly,
a notification system should have a way of determining the
user’s state of activity We propose a novel method to estimate
user states with a pressure sensor on a desk. We use a lattice-
like pressure sensor sheet and distinguish between two simple
user states: busy or idle. The pressure can be measured without
the user being aware of it, and changes in the pressure reflect
useful information like typing, an arm, the presence of a coffee
mug, and so on. We carefully developed features which can be
extracted from the sensed data and used a machine learning
technique to identify the user state. We conducted experiments
evaluating the accuracy of our method and obtained promising
results.

I. INTRODUCTION

In the current office environment connected to the Internet,
users tend to get a lot ofnotifications[1] in the form of
e-mails, like in Fig. 1, instant messages, and alerts for
application updates. A problem with such notifications is
they arrive as they are sent, i.e., without the system being
aware of whether the user has time to read them or not. If
messages arrive at inopportune times, they can cause stress
and reduce the user’s productivity [2]. One way of alleviating
this problem would be to control the information notification
period in accordance with the user’s state of activity. In other
words, this means a system would need to estimate whether a
user’s activity can be interrupted or not, and send information
only when he/she can be interrupted.

Another approach does not estimate whether the user
can be interrupted. A peripheral display [3], [4] is such
approach. However, this method of estimating a user’s state
has other purposes besides notification, e.g., emotional state
estimation.

Fig. 1. Notification for arriving e-mails

The system we are interested in would monitor user be-
haviors like typing, mouse operations, and so on, to estimate
whether he or she can be is interrupted or not. There are
a number of studies on systems that utilize the frequency
of keyboard strokes and mouse operations [5]. However,
their methods cannot be applied to a cases in which the
frequency does not reflect the user’s state of activity or
when the user does not use such input equipments. There
are also estimation methods that use additional equipments,
e.g., web cameras and eyeBlog video glasses, [6], [7], [8].
However, these methods need to monitor user behaviors by
taking pictures of their faces and bodies, and thus they could
cause psychological stress on the user.

In this study, we developed a novel method to estimate
user states by using tabletop pressure. At a desk with a PC,
there are changes in pressure on the tabletop caused by the
forces of various user behaviors including typing, resting
one’s arm, lifting a mug of coffee, reading a book, and so
on. We considered that useful information for estimating the
user’s state of activity can be extracted from such slight
changes in tabletop pressure. However, there are only a
few studies on estimating user states by using tabletop
pressure. We hence developed a concrete method for esti-
mating user states by using tabletop pressure. We carefully
identified features that significantly contribute to such an
estimate. Then, we used the machine learning technique C4.5
to classify user states as idle (i.e., interruptible) or busy
(not-interruptible). We conducted preliminary experiments to
evaluate the accuracy of our method and obtained promising
results.

II. ESTIMATING A USER STATE BY USING
TABLETOP PRESSURE

For measuring the tabletop pressure, we spread a pressure
sensor sheet having measurement points in a reticular pattern
on a tabletop. We assumed that a the user does all his/her
work on the sheet and that all objects on the tabletop are
placed on it. We investigated the forces involved in typing,
resting one’s arm, and placing objects on the tabletop, and
we found that we need a sensor sheet about 1 meter square
with pressure gradation ability of 10 grams.



Fig. 2. LL-Sensor

Fig. 3. Output of sensor

Hence, we decided to use the LL-sensor (Xiroku Co.,
Ltd ) in Fig. 2. This sensor leverages the feature of mutual
induction. It is 600 millimeters square, and its resolution is
10 millimeters square. It outputs not a physical quantity but
a unique value. Figure 3 shows the output of the LL-sensor.
The white unit means the lowest value and the blue, green,
red, and black means higher values. A keyboard is placed
on the square area, and the user’s arms are placed on the
elliptical areas.

A. Useful features for user state estimation

We pick out feature quantities from the pressure data. In
particular, we used key pressing force weight, and location
and their changes as feature quantities. We assumed that
objects on a tabletop are only a the keyboard of the PC
and the users’ arms. In the future, we plan to extend this
range to include other artifacts like coffee mugs, books, and
so on. Note that the weight of a the keyboard is included in
the key-typing force.

B. User state estimate

After obtaining features from the raw data, we needed to
identify a user state from the data. We utilized classification
learning to classify the state into idle (interruptible) or

Fig. 4. Overview of the experimental environment

Fig. 5. Main task window

busy (uninterruptible). We used C4.5 as the classification
algorithm.

III. EXPERIMENTAL METHOD

A. Experimental environment

We built a simplified desk work environment for elimi-
nating complex factors from this early stage of experimenta-
tions. Figure 4 is an overview of it. A participant sits down
in front of a desk, and the monitor shows a task window.

Figure 5 shows the window of the main task, and Fig. 6
shows a dialog box asking whether sending notifications at
this time is permissible.

B. Features

The task was typing, and the tabletop only had a keyboard
(and the user’s arms). Hence, we used the following five
features.

1) Left foot of keyboard: left foot
2) Right foot of keyboard: right foot
3) Front foot of keyboard: bottom foot
4) Left arm of user: left hand
5) Right arm of user: right hand

These appear as definite areas because the keyboard and
the user’s arms are the only things on a sheet. We divided



Fig. 6. Notification window
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Fig. 7. Regions of LL-sensor.

the sheet into five regions like in Fig. 7 after conducting
preliminary experiments.

Next, we chose sensor units which outputted the value
over the threshold for each region. We decided to use 20 as
threshold after doing some trials. The feature for the time
was the average of the chosen units. The training data was
the average of the data for 30 frames before the notification,
and the user labeled the data with ”allow” or ”reject.”

We used J48 in weka3.6.4[9] as an implementation of C4.5
with two classes (accept, reject) and a confidence factor 0.25.

C. Keyboard Used in Experiments

Since our method uses key-typing force, the estimate of
a the user state might be significantly influenced by the
properties of the keyboard, e.g. response level, weight, leg
shape, and the ground contact area of the foot. Thus, to
investigate the influence on the keyboard’s properties, we
used the following keyboards in the experiments.

• Keyboard A: KFK-EA4XA (Mitsumi Electric Co., Ltd)
• Keyboard B: Realforce 91 NE0100 (Topre Co., Ltd)

Keyboard-A was a standard one. Keyboard-B is one designed
for keypunch operators.

D. Participants and Experimental Procedure

The participants were students and staff in the information
science department (age; from 23 to 51, mean 35.4, SD =

TABLE I

RESULTS OF10-FOLD CROSS VALIDATION

Conditions TP FP Prec. Recall F-M.
For each test 0.825 0.179 0.837 0.825 0.825

For each participant 0.827 0.175 0.828 0.827 0.827
For each keyboard 0.802 0.195 0.807 0.802 0.802

Total 0.665 0.352 0.670 0.665 0.657

11.7) and they consisted of seven males and one female.
All participants were habituated for key-typing because they
worked with PCs everyday.

The experimenter gave the following instructions to the
participant:

Instructions to participants� �
Please type the scrolling display of characters as cor-
rectly as possible. Your typing will be recorded. The
scroll speed changes, or stops.
When typing, the system will ask you whether you can
be interrupted or not. Please suppose that the notifica-
tions provide you with small amounts of information
like weather reports and news. Please push either ”F1
– F6” if you accept it; please push either ”F7 – F12” if
you reject it. The window closes after you answer.� �
The participants used each of the keyboards in turn. The

order of keyboard use was counter balanced among partici-
pants. Each“ test” involved a participant and a keyboard.

We extracted the features from the output of the sensor
and added interruptible data labeled by users. The following
four data sets of the pattern were created:

• A dataset for each test (nd = 16, nt = 30)
• A dataset for each participant (nd = 8, nt = 60)
• A dataset for each keyboard (nd = 2, nt = 240)
• A dataset for total (nd = 1, nt = 480)

Here,nd is the number of dataset, andnt is the number of
training data for each dataset.

To remove the influence of the difference in the numbers of
accept/reject data, the number of training data was adjusted
with ”Resample”, which is one of the training data filters
implemented in weka.

The classification was performed with a 10-fold cross
validation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results of 10-fold cross validation are
shown in Table I. TP means the rate of correctly classified
data, and FP means rate of incorrectly classified data. and
F-M. means F-Measure.

A. Accuracy of state estimate

The experimental results show our method’s estimation
of a user state has about 83% accuracy for each participant
and about 80% for each keyboard. We consider this level of
accuracy sufficient for preliminary experiments, and it shows
our approach of estimating user states with tabletop pressure



is promising. In the future, we will introduce more useful
features for achieving higher accuracy.

In this study, the experiments were done in an impractical
simplified environment. This means there is no guarantee of
equivalent accuracy in a real environment. We should there-
fore increase the accuracy because the experiment acquired
information in a restricted environment.

After investigating the decision trees, we did not find
any regularity between the sizes of the feature values and
theclassifications.

B. Influence of keyboard properties

The learning for uniting data gathered from the two key-
boards for each participant and learning for each keyboard
for each participant have the same accuracy. In addition, as a
result of uniting and learning all the participants’ results for
both keyboards, no differences were observed in the results
of the two keyboards.

These results mean that states can be estimated without
influence from the type of keyboard.

C. Estimation of state of user who is not typing

Our method can estimate the user’s state only when the
user is doing a keyboard typing task on a desktop because a
pressure sensor can not sense any change in pressure when
the user is not typing. Thus, in the experimental evaluation,
we assumed that a user could be interrupted when s/he wasn’t
typing.

However, this assumption is not always valid in real
environments. For example, a user might be thinking, reading
web pages, and watching a movie on the display when they
aren’t typing, and they would not want to be interrupted
in such situations. To cope with this problem, we plan to
extend the current features to cover no-typing situations. We
will introduce additional features including the pressure of
a mug, the shape and area occupied by arms resting on a
desktop, which the pressure sensor can sense. We consider
these additional features are promising because a user does
not pick up a mug frequently and does not change his/her
arm position much when concentrating on something.

V. CONCLUSION

We developed a novel method of user state estimation
using tabletop pressure. We conducted an experiment that
showed our method could estimate when a user was too busy
to receive typical messages.

In particular, the experimental results show the user state
estimate was accurate about 83% of the time for each partic-
ipant and about 80% of the time for each keyboard used. A
state estimation independent of keyboard characteristics was
also found to be possible.

In the future, we will use richer features taken from
real experimental environments. This will help to increase
accuracy and make it possible to estimate activity states
of users when they are not using the keyboard. For that
purpose, we will try to determine the optimal number of
the features. In addition, we will assess the utility of cost-
sensitive learning.
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