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Abstract—Constrained Clustering is a framework of improving
clustering performance by using supervised information, which is
generally a set of constraints about data pairs. Since performance
of constrained clustering depends on a set of constraints to use,
we need a method to select good constraints that are expected
to promote clustering performance. In this paper, we propose
such a method, which actively select data pairs to be constrained
by using variance of clustering iteration. This method consists
of a bagging based cluster ensemble algorithm that integrates a
set of clusters produced by a constrained k-means with random
ordered data assignment. Experimental results show that our
method outperforms clustering with random sampling method.

I. INTRODUCTION

Constrained clustering[1], [2] is a kind of semi-supervised
learning technique that utilizes labeled and unlabeled data
to enhance learning performance. Difference from normal
clustering is the use of background knowledge, which is given
in the form of constraints about data pairs. Such constraints
have two kinds, usually called must-link and cannot-link
constraints. The former is constraints about data pairs that
must be in a same cluster, while the latter ones is about
data pairs that must be in different clusters. The challenge of
constrained clustering to develop utilization methods of such
constraints. Some researches proposed to use them in the k-
means algorithm as knowledge for assigning data to cluster
centers, and some others proposed to use them as constraints
for an optimization problem [3].

Although the use of constraints is an effective approach,
we have some problems in preparing constraints. One problem
is the efficiency of the process. Because constraints must be
labeled as “must-link” or “cannot-link” manually by human,
his/her cognitive cost seems very high. We need support
to help users cut down such an operation cost. The other
problem is the effectiveness of the prepared constraints. Many
experimental results in recent studies have shown clustering
performance does not monotonically improve (sometimes de-
teriorates) as the number of applied constraints increases. The
degree of performance improvement relies on the quality of
constraints, not the amount. These results imply that con-
straints are not all useful, some are effective but some are
not effective or even harmful to the clustering. We also need
support to help users select only effective constraints that
improve the clustering performance. These problems can be
resolved by the framework of active learning that automatically
selects constraint candidates expected to be useful.
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We propose an active sampling method to select a data pair
as a constraint candidate that is expected to be useful if true
constraint label (must/cannot-link) is given for it. Our method
is based on a bagging[4] based cluster ensemble technique
and a constrained k-means with random data assignment
order. This is a realization of cluster ensemble framework
that exploits partially coherent data group from clustering
iteration and integrates them into a set of final clusters. Cluster
variation can be created by changing data assignment order in
a constrained k-means algorithm that is a modified version of
COP-Kmeans proposed by Wagstaff[5]. Though original COP-
Kmeans algorithm tends to create inconsistent clusters because
the results heavily depends on its data assignment order that
is generally undecidable, we use such behavior to produce
diversity for cluster ensemble.

Once we can produce diversity of clusters, we can measure
uncertainty of belongingness of each data pair. Here, belong-
ingness means whether a data pair belongs to a same or not
and we can measure such uncertainty by using entropy that
is calculated from the probability of the belongingness. It is
well known that “uncertainty” is one of major criteria for
active learning [6] to select candidates of training data. This
is generally called uncertainty sampling [7]. In this research,
we need uncertain data pairs that are expected to be useful to
improve clustering performance if they are used as constraints.
We expect that constraints added by such uncertainty sampling
are more effective than constraints selected at random.

The rest of this paper is organized as follows. We first
introduce a constrained clustering method based on a bagging
framework in Section II. Then we propose our method of
active constraint sampling based on the clustering algorithm in
Section III. Section IV presents the results of the experiments
conducted using six datasets. We finally conclude our work in
Section V.

II. CLUSTERING ALGORITHM

We first propose a constrained clustering algorithm that is
based on a bagging based cluster ensemble technique and a
constrained k-means with random data assignment order.

Bagging is one of the ensemble learning techniques used to
produce a classifier by integrating weak hypotheses generated
by a weak learner that has outperforms random classifiers to
some extent. Algorithm 1 is our clustering algorithm based on
bagging. According to the normal description of the bagging,
we can correspond each element of our algorithm as a
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Algorithm 1 Ensemble of Constrained K-means

Algorithm 2 Constrained K-means

1: INPUT: Dataset X = {z1,..., 7| x|},

Constraints S= {(i1, j1,Y1), .-, (|s], 415, Y|s|) }»
k: No. of clusters
OUTPUT: Clusters C = {C1,Cs, ..., Ci}

:fort=1to T do
Run constrained k-means
Then, create kernel matrix K*

K'(i, ) ={ !

-1
end for

procedure(Algorithm?2).

(x;, ;) belongs to same cluster

Calculate final kernel matrix K

T
K= ZK‘
t=1

Run kernel k-means algorithm with K, and return final
set of clusters C

)

o Weak Learner — Constrained K-means((Argorithm?2))
¢ Training data — Constraints (must/cannot-link).

A constrained cluster produced by the constrained k-means
in each bagging step is used as a kernel matrix. Each element
of this kernel matrix indicates whether or not the correspond-
ing data pair belongs to the same cluster. Thus, the kernel
matrix represents the link connections of the clusters. From the
point of a weak learner, the modified COP-Kmeans predicts
the existence of the link between any data pair in the clusters
using the constraints as a set of training data. The kernel matrix
is an aggregation of these predictions. The kernel matrices are
summed up as a kernel. The final clustering result is generated
using this final kernel matrix.

Algorithm 2 lays out the entire procedure of our constrained
k-means. Although it follows the basic procedure of the
standard k-means algorithm, which assigns data to its nearest
cluster center, its assignment process is rather complicated
since we must consider the weight of constraint. There are
mainly two parts to the assignment processes, which consists
of the procedure for the constrained and unconstrained data,
respectively. The latter one (for the unconstrained data) re-
mains the same as that in a normal k-means process. What
we need to consider is the process for the previous one (for
constrained data). We must take several cases like those listed
below into consideration.

o Whether or not one of the data pairs has already been
assigned?

Our algorithm assigns a constrained data pair at the same
time. Since some data contain several constraints, one (or
both) of the data may have already been assigned in some
cases. We must prepare procedures for such situations.
Which constraint the data pair has? - must-link or cannot-
link?
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(x;, ;) belongs to different clusters

1: INPUT: Dataset X, Constraint Set S, No. of clusters k,
2: Weights of Constraints w,(n =1 ~ |S])

3: OUTPUT: Clusters C'

4: Select initial cluster centers

5: for 1 =1 t0 Tmas do

6:  Assign a random value to each w,

7:  Sort constraints in descending order according to w?,

8:  Assign constrained data pairs (z;,x;) to cluster centers in

sorted order following procedure below

9:  Let (x;, ;) be data pair to be assigned, then each data will be
assigned to one cluster centers according to following cases.
10:  if Both of (z;, ;) have not been yet assigned then
11: Let ¢;, ¢; be nearest cluster centers for x; and x; respec-
tively, then let d(x;, ¢;), d(x;, c;) be distances between each
data and its nearest cluster center.
12: if (z;, ;) is constrained by must-link then
13: if d(l‘z, Ci) < d(ibj, Cj) then
14: Assign x; and x; to ¢;
15: else
16: Assign them to c;
17: end if
18: else if (z;,x;) is constrained by cannot-link then
19: if ¢; # ¢; then
20: Assign x; to ¢;, x; to cj, respectively
21: else
22: if d(xs,¢;) < d(zj,c;) then
23: Assign x; to ¢;, z; to second nearest center
24: else
25: Assign x; to ¢;, x; to second nearest center
26: end if
27: end if
28: end if
29:  else if x; has been already assigned and x; has not been yet
assigned then
30: Let ¢; be cluster center to which x; is assigned
31: if ; and z; are constrained by must-link then
32: Assign x; to c;
33: else if x; and x; are constrained by cannot-link then
34: Assign x; to cluster center that is nearest to data and is
different from c;
35: end if
36:  else if x; has not been yet assigned and x; has already been
assigned then
37: Let c¢; be cluster center to which z; is assigned
38: if z; and z; are constrained by must-link then
39: Assign x; to ¢;
40: else if x; and x; are constrained by cannot-link then
41: Assign x; to cluster center that is nearest to data and is
different from c;
42: end if
43:  end if
44:  Assign rest of data that are not constrained to their nearest
cluster centers
45:  if Clustering result does not change from previous one then
46: Return result and exit
47:  else
48: Update cluster centers and go to next step
49:  end if
50: end for
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Depending on the situation described above, we must pre-
pare different procedures according to which constraint
the data pair has.



We describe the concrete procedure considering the above
cases in Algorithm 2 (1.9 ~ 42).

III. ACTIVE CONSTRAINTS SAMPLING

The constrained clustering algorithm introduced in previous
section produces a variety of clusters. It may occur that a
data pair belongs to a same cluster in a bagging step, but
they do not in another step. In this way, we can calculate
probabilities that a data pair belongs to a same cluster or
not from the bagging process. We calculate the entropy for
each data pair according to the probabilities and use it as a
measurement of “uncertainty” to select constraint candidates
for future clustering.

Let (z;,x;) be a data pair and p;; be a probability that they
belongs to a same cluster. We can calculate a entropy F;; for
each (x;,z;) as follows.

Eij = —pijlogpi; — (1 — pij) log(1 — pij) 2

Here, p;; can be estimated from the number of occurrence
that (z;,x;) belongs to a same cluster during bagging steps
1~T.

Once we can calculate entropies, we select several data pairs
that has higher values as constraint candidates and give them
constraint labels (must/cannot-link). This sampling process
follows “uncertainty sampling” that is one of major and useful
active learning framework. We consider a data pair that has
high entropy value to be a good candidate since their constraint
label is difficult to predict.

IV. EXPERIMENTS

We evaluated our proposed method on six datasets. The
datasets are summarized in Table I. Glass, wdbc and balance
are from the UCI repository! and tr11, tr12 and tr23 are from
the CLUTO datasets 2.

We compared the following methods for constraint sam-
pling.

o active: This is our proposed method, which selects data
pairs to be labeled based on the entropy calculated by
the clustering sequence obtained during bagging process.
Our algorithm starts from 10 (randomly selected) source
constraints and repeats active sampling until it gets 100
constraints. In an active sampling, it selects and labels 10
constraint candidates. We repeated this sampling process
10 times and show the average score as the final results.

o random: This method randomly selects data pairs to be
labeled. We repeated 10 sampling process and show the
average score in a similar way as our active method.

Both methods are based on a clustering algorithm described
in Section II. The bagging step 7" was set to 100. Distance
metric we used in the experiments was the Euclid distance.
We used normalized mutual information (NMI) to measure
the clustering accuracy. The NMI was calculated by using the

Uhttp://archive.ics.uci.edu/ml/
Zhttp://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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TABLE I
DATASETS
No. of Data | No. of Class | No. of Attribute
glass 214 6 10
wdbc 569 2 30
balance 625 3 4
trll 414 9 6429
tr12 313 8 5804
tr23 204 6 5832
following formula.
I(C, T
NMI(C,T) = 7( . 7)
H(C)H(T)

where C is the set of cluster labels returned by algorithms
and T is the set of true cluster labels. I(C,T) is the mutual
information between C and T', and H(C') and H(T) are the
entropies.

Fig.1 shows the results on the six datasets. In every graph,
horizontal axis indicates the number of constraints used for
clustering, and vertical axis indicates the NMI value. Our
method slightly outperforms random sampling method in all
datasets. Although our method showed little improvement in
trl1 and tr23, in other datasets, it outperformed random sam-
pling method and extended the gap as constraints increased.
In addition, our method achieved performance improvement
in glass and wdbc despite random method did not show any
improvement at all.

V. CONCLUSION

In this paper, we proposed a sampling method for con-
strained clustering, which actively selects data pairs to be
constrained by using variance of clustering iteration. This
method consists of a bagging based cluster ensemble algorithm
that integrates a sequence of clustering results produced by a
constrained k-means with random ordered data assignment.
Using this base clustering method, our sampling method
measure uncertainty of belongingness of each data pair, which
is represented by entropy calculated from the probability of the
belongingness. Experimental results showed that our method
outperforms clustering with random sampling on six datasets.
Though the improvement was mostly slight, it should be noted
that our method achieved the performance despite relatively a
small set of constraints.

Since active sampling for constrained clustering has not
been well developed, our method can be an option. We will
investigate the behavior of the method and test it on many
other datasets.
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