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Abstract—This paper proposes a constrained clustering
method that is based on a graph-cut problem formalized by
SDP (Semi-Definite Programming). Our SDP approach has the
advantage of convenient constraint utilization compared with
conventional spectral clustering methods. The algorithm starts
from a single cluster of a complete dataset and repeatedly
selects the largest cluster, which it then divides into two clusters
by swapping rows and columns of a relational label matrix
obtained by solving the maximum graph-cut problem. This
swapping procedure is effective because we can create clus-
ters without any computationally heavy matrix decomposition
process to obtain a cluster label for each data. The results of
experiments using a Web document dataset demonstrated that
our method outperformed other conventional and the state of
the art clustering methods in many cases. Hence we consider
our clustering provides a promising basic method to interactive
Web clustering.

I. INTRODUCTION

Constrained clustering is a semi-supervised learning ap-

proach that utilizes pre-given knowledge about data pairs

to improve normal clustering accuracy [1]. The knowledge

used is generally of two simple types: a constraint about

data pairs that must be in the same cluster, and a constraint

about data pairs that must be in a different cluster. These

are usually called must-link and cannot-link, respectively.

Recent research about distance metric learning interprets

the constraint information as the distance or kernel value of

data pairs and tries to produce a new distance measure or

kernel matrix for a complete dataset to ensure the distance

of must-link is small and the distance of cannot-link is large

[2]. In this research, we do not interpret the constraint as

a distance or kernel value but rather as a relational label

that indicates whether data pairs should be in the same

cluster or not. Our objective is to predict the correct label

for each data pair (not for each individual piece of data)

by using sample labels converted from pre-given constraint

information according to the framework of the transductive

learning.

Our method is based on the graph-cut problem. Although

graph-cut based clustering (e.g., spectral clustering) is a well

known approach and many methods have been proposed

so far [3], their solutions are mostly based on the graph

spectrum obtained by eigen decomposition, which requires

complicated processes to add in the constraint information.

Our approach is to solve it as a semi-definite programming

(SDP) problem. The advantage of SDP is that we can

naturally incorporate constraints without any complicated

processing and do not need any specific objective functions

(e.g., normalized cut) to avoid a trivial solution (as is the

case with many other spectral clustering methods).

In terms of formalization, our problem is the same as Li’s

[4] or Hoi’s [5], although the introduction is completely dif-

ferent. The most critical difference is the interpretation of the

SDP solution. They interpret the solution as a kernel matrix

and use it for multi-class clustering, while we interpret it

as a label matrix (as described above) and use it for two-

class clustering. As we will show in the experiments, our

two-class clustering approach performs better than the multi-

class clustering approach. Our approach is based on the

divide and conquer algorithm. It starts from a single cluster

of a complete dataset and repeatedly selects the largest

cluster, which it then divides into two clusters until we get

the target numbers of clusters. In each iteration, we obtain

relational labels for all data pairs from the solution of the

SDP problem. We then use the label matrix to create clusters

by swapping rows and columns to reduce the clusters’

label distribution entropies. This swapping procedure is

very effective because we can create clusters without any

computationally heavy matrix decomposition processing.

In summary, we propose a constrained clustering method

that has the following features.

• Clustering is performed based on the relational labels

of all data pairs that are obtained by solving a graph-

cut problem formalized by semi-definite programming.

Our SDP approach has the advantage convenient con-

straint utilization compared with conventional spectral

clustering methods.

• The interpretation of the obtained matrix is different

from Li and Hoi’s approaches, although the problem

formalization is similar. They use the matrix as a kernel

matrix for one-time multi-class clustering, while we use

it as binary label matrix for divide and conquer-based

two-class clustering.

These advantages make constrained clustering more effi-

cient, especially in the case of small number of constraints.

Thus we are planning to apply this clustering method to

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4513-4/11 $26.00 © 2011 IEEE

DOI 10.1109/WI-IAT.2011.42

126

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4513-4/11 $26.00 © 2011 IEEE

DOI 10.1109/WI-IAT.2011.42

126



interactive web clustering like [6].

II. GRAPH PARTITIONING AND ITS SOLUTION

A. Maximum Cut Problem
The objective of the problem is to divide a graph into two

parts as its cut amount reaches the maximum. More formally,

consider a graph G = (V, E), where V is a set of vertices

and E is a set of edges. The problem is to find partitioning

(V1, V2) such as V1 ∪ V2 = V and V1 ∩ V2 = φ and a

maximum cut amount of
∑

i∈V1,j∈V2
wij . Here, wij is the

weight of an edge between data i ∈ V1 and data j ∈ V2. We

decide on a “maximum” cut when wij is defined by some

distance (e.g., Euclid distance). In contrast, if wij is defined

by some similarity (e.g., Gauss kernel), the “minimum” cut

is appropriate.
By introducing a cluster label variable ui for each vertex,

we can formalize the maximum cut problem as follows.

Maximum Cut Problem

maximize
1
4

∑
i∈V1

∑
j∈V2

wij(1− uiuj)

subject to u2
k = 1 (k ∈ V )

uk =
{

+1 (k ∈ V1)
−1 (k ∈ V2)

According to the standard method of spectral clustering

or segmentation by the random walk model, we can solve

this problem with the method of Lagrange multipliers. The

ui labels are obtained as eigen vectors corresponding to the

second largest eigen value.
Our aim is to incorporate given constraints into the above

problem and find a method to solve constrained maxi-

mum cut problems. While there are constrained versions of

spectral clustering methods, we adopt a different approach,

solution by semi-definite programming (SDP), which is

practically easier to use because it can handle constraints

intrinsically.

B. Solution by Semi-definite Programming Relaxation
Semi-definite programming is a kind of convex optimiza-

tion that is used to relax several optimization problems such

as combinatorial optimization, 0-1 integer programming, and

non-convex quadratic programming. Since the maximum cut

problem is an example of 0-1 integer programming, SDP can

also relax it.
For the standard formalization of SDP, we transform the

above objective function into a matrix representation with

a weight matrix W and a matrix X whose element is the

product of ui and uj .

∑
i∈V1

∑
j∈V2

wij(1− uiuj) = (diag(W e)−W ) •X

= L •X

�

� �

�

�
�

Figure 1. Cannot-link is not applicable in divide and conquer approach

X = uT u

u = (u1, u2, ..., un), n = |V |
L is the graph Laplacian matrix and e is a vector whose

elements are all one. As a final step, we add must-link con-

straints to formalize the constrained maximum cut problem

as follows.

Maximum Cut Problem with SDP Relaxation

maximize L •X

subject to Eii •X = 1, (i = 1 ∼ n)
Eij •X = 1, (i, j) ∈M

X � O

Eij is an n × n matrix in which only the (i, j) element

is 1, and all others are 0. M is a set of must-link.

Although available constraints are not limited to must-

link, meaning we can also use cannot-link, it is very difficult

to select applicable cannot-links during multi-class cluster-

ing because the partitioning order determined in the graph

cut process is usually unpredictable in advance. Figure 1

gives an idea of the difficulty of using cannot-link. There

are three data in the figure - a, b, c - and cannot-link is

applicable only at the second cut. It cannot be used at the

first cut because b and c are in the same cluster at that time.

There are several freely available SDP solvers that we can

use to obtain an approximate solution X̃ . Although we need

to decompose X̃ to obtain partitioning label u, we found a

way to complete partitioning by using only X̃ . We explain

this method in the next section.

III. CLUSTERING THROUGH SWAPPING ROWS AND

COLUMNS IN A LABEL MATRIX

As described in the previous section, we solve the max-

imum cut problem with relaxed SDP, so the elements of

X̃ are assigned a real value ranging from -1 to 1. Though

we can use those values as similarity and run k-means,

we found the resulting performance was very low. We

therefore decided on a different approach in which we first

binarize X̃ with 0-1 values, then swap rows and columns to
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Algorithm 1 Clustering Procedure

1: Input: D // Dataset
2: W // Weight Matrix
3: M // Must-Link Set
4: K // Number to be Clustered
5: Output: {D1, D2, ..., DK} // K clusters
6:

7: Let D0
sub = D

8: Select the largest cluster Dt
sub

9: Select a set of must-link applicable to divide Dt
sub

10: Solve maximum graph cuts problem for Dt
sub and divide Dt

sub

into Dt
sub1 and Dt

sub2

11: Return STATE 8 and Repeat K-1 times

maximize the evaluation measure, and finally determine the

partitioning border.

The concrete procedures are as follows.

1) Each element of X̃ is binarized as follows.

xij =
{

1, if xij ≥ 0
0, if xij < 0

The value does not matter because we treat 0 and 1

as a character in the following steps.

2) For each row, treat the column’s value as a character (0

or 1) and make a string (or pattern) by concatenating

each character in the original order. Next, make groups

of the same string (select a representative of each kind

of string).

3) Determine the most frequent string s0, and calculate

the Hamiltonian distance between s0 and the other

strings. Next, align other strings in descending order

of the distance. String s1 is the most similar to s0.

4) Determine the partitioning boundary according to the

following measure.

F (i, j) =
4∑

k=1

−pk
0 log(pk

0)− pk
1 log(pk

1)

(i, j) represents the partitioning boundary. If we parti-

tion the above aligned matrix in the boundary between

i’s row and j’s row (i.e., also in the boundary of i’s
column and j’s column ), there are four partitioned

areas in the matrix. pk
0 and pk

1 are the probabilities of

0 and 1, respectively, that appears in the area k. Thus,

F (i, j) is the sum of the entropy in four areas when

partitioned between ith and jth row (and column). The

more clearly partitioned, F (i, j) becomes lower.

5) Determine the boundary at the lowest F (i, j).
Figure 2 illustrates this procedure. The figure shows the

case of two class clustering. The clusters are made by the

boundary between 0 and 1 in the matrix.

This is a heuristic method because the original problem is

a combinatorial one and practically intractable. There is no

guarantee for obtaining global optimum. However, experi-

mentally it works well, as described in the next section.

��
�
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�
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Figure 2. Clustering process by swapping rows and columns in a label
matrix

Table I
DATASETS

No. Category #data
1 Anomalies and Alternative Science 47
2 Science in Society 45
3 Environment/Water Resources 42
4 Astronomy 24
5 Technology/Structural Engineering 24
6 Agriculture 19
7 Biology/Genetics 16
8 Social Sciences/Linguistics 15
9 Physics 15
10 Earth Sciences 11
11 Math 10
12 Chemistry 6

We describe an entire procedure of our clustering algo-

rithm in Algorithm 1.

IV. EXPERIMENTS

We evaluated our proposed method using a Web document

dataset extracted from the Open Directory Project (ODP)1.

The categories we used are summarized in Table I. They are

all sub-categories of the “Science” top category. In each sub-

category, there are some registered sites. We used top pages

of those sites as data. We removed tags and stop words from

original web pages, and then made a tf-idf vector for each

data.

We compared the following four methods.

• GCUT: This is our proposed method. We use the SDPA

package2 for solving the semi-definite programming.

We adopted the Euclid distance for the weight wij of

a graph edge in the maximum graph-cut problem.

• CKM: This is the COP-Kmeans constrained clustering

algorithm proposed by Wagstaff [7]. We used ten seeds

for the k-means and took the average of those results.

• ITML: This is a state of the art metric learning (Infor-

mation Theoretic Metric Learning) method proposed

by Jain [8]. We used improved online version of this

method because it was too difficult to tune parameters

and thereby obtain stable results with the original batch

version. We changed the learning parameter η from

1http://www.dmoz.org/
2http://sdpa.indsys.chuo-u.ac.jp/sdpa/
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(a) Category 1∼4
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(b) Category 1∼8
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(c) Category 1∼12

Figure 3. Results

0.1∼0.9 with 0.1 steps and selected the best results

for the evaluation. The clustering is done by a normal

k-means algorithm. We used ten seeds for the k-means

and took the average of those results.

• SDPKKM: We also compared the method proposed by

Li or Hoi [4], [5], which has similar SDP formalization

of the problem to ours but there is a big difference

for the use of the solution matrix. We adopted the the

innner product of the feature vector i and j for the

weight wij of a graph edge used during the kernel

matrix learning because it was too difficult to tune the

radius parameter for the Gaussian kernel. The clustering

is done by a conventional kernel k-means algorithm. We

used ten seeds for the k-means and took the average of

those results.

We use normalized mutual information (NMI) to measure

the clustering accuracy.

Figure 3 shows the results. The horizontal axis is the

number of constraints and the vertical axis is the value

of normalized mutual information (NMI). We increase the

number of must-link constraints from 0 to 500, which is

randomly selected. We tested each method with ten different

sets of constraint and calculate those average for the results

at each number of constraint.

We changed the number of categories to test as shown

in the figure. Though SDPKKM and CKM showed compa-

rable performance in Figure 3 (a) and (c) respectively, our

proposed method mostly outperformed other methods in any

category set.

V. CONCLUSIONS

In this paper, we proposed a constrained clustering method

that is based on a graph-cut problem formalized by semi-

definite programming and deterministic iterative two-class

partitioning approach. While graph-cut based clustering

is a particularly promising way to improve conventional

techniques like k-means method, few methods have been

proposed, which can naturally incorporate constraint like

must-link and cannot-link.

Our method has the advantages of more convenient con-

straint incorporation compared to other graph-cut based

method like spectral clustering and more appropriate SDP’s

solution matrix utilization compared with other SDP-based

methods. Results showed that our proposed clustering

method constantly outperformed conventional methods and

utilized constraints effectively.

The advantages of our proposed clustering is efficiency,

especially in the case of small number of constraints. Thus

we are planning to apply this clustering method to interactive

(Web) clustering with GUI [6].
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