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Abstract—The k-means clustering method is a widely used the course of the method. Since there are at mgpossible
clustering technique for the Web because of its simplicity and clusterings, the process will always terminate. In practice, very

speed. However, the clustering result depends heavily on the fa\y jterations are usually required, which makes the method
chosen initial clustering centers, which are chosen uniformly at . T
much faster than most of its competitors.

random from the data points. We propose a seeding method - o
based on the independent component analysis for the k-means Unfortunately, the empirical speed and simplicity of the k-

clustering method. We evaluate the performance of our proposed means clustering method come at the price of accuracy. There
method and compare it with other seeding methods by using are many natural examples for which the method generates
benchmark datasets. We applied our proposed method to a Web o piarily bad clusters. Furthermore, these examples do not

corpus, which is provided by ODP. The experiments show that - .
the normalized mutual information of our proposed method rely on an adversarial placement of the starting centers, and

is better than the normalized mutual information of k-means the ratio can be unbounded with high probability even with
clustering method and k-means++ clustering method. Therefore, the standard randomized seeding technique.

the proposed method is useful for Web corpus. In this paper, we propose a way of initializing k-means by
Keywords-k-means; k-means++; independent component anal-choosing Independent Component Analysis based starting cen-
ysis; seeding; ters. We also provide preliminary experimental data showing

that in practice, our proposed method really does outperform
. INTRODUCTION k-means and k-means++ in terms of both accuracy and speed.
Clustering is one of the classic problems in machine learn-
ing and computational geometry. In the popular k-means [l. RELATED WORKS
formulation, one is given an integér and a set ofn data . . ) .
points inRY. The goal is to choose centers so as to minimize In this section, we formally define the k-means clustering

the sum of the squared distances between each point andfIem. as well as the k-means clustering and k-means++
closest center. clustering methods. _ .

Solving this problem exactly is NP-hard, even with just two FOr the k-means probledm, we are given an integend a
clusters [1], but twenty-five years ago, Lloyd[2] proposed SEt Of data pointsy C R®. We wish to choosé: centersC
local search solution that is still very widely used today (s&¥ @S t0 minimize the potential function,
for example [3], [4]). Indeed, a recent survey of data mining . 9
techniques states that it "is by far the most popular clustering 0= Z eec I = el
method used in scientific and industrial applications”[5]. xex

Usually referred to simply as k-means, Lloyd’'s metho€hoosing these centers implicitly defines a clustering for each
begins withk arbitrary centers, typically chosen uniformly atenter, we set one cluster to be the set of data points that are
random from the data points. Each point is then assigned to ttieser to that center than to any other. As noted above, finding
nearest center, and each center is recomputed as the centanadxact solution to the k-means problem is NP-hard. Through-
mass of all points assigned to it. These two steps (assignmeat the paper, we will le€,,: denote the optimal clustering
and center calculation) are repeated until the process stabilifes.a given instance of the k-means problem, and we will let

One can check that the sum of the squared distanegs, denote the corresponding potential. Given a clustefing
between each point and its closest center is monotonicall§th potential¢, we also lety(.4) denote the contribution of
decreasing, which ensures that no clustering is repeated dutig- x to the potential (i.e.¢(A) = 3 _ , mincec [[x—c||?).
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A. The k-means clustering method
The k-means clustering method is a simple and fast method ° °
that attempts to locally improve an arbitrary k-means cluster- = Xs
ing. It works as follows. 3
1) Arbitrarily choosek initial centersC = ¢y, ..., c.
2) For eachi € {1,...,k}, set the clustee; to be the set 2 . .
of points inx that are closer te; than they are ta; X, X
for all j # 1.
3) Foreach € {1,...,k}, setcz to be the center of mass 1 o °
of all points |nC Ci = 157 > X X
4) Repeat Steps 2) and 3) undillno Ionger changes.

It is standard practice to choose the initial centers uniformly 0
at random fromy. For Step 2), ties may be broken arbitrarily,

as long as the method is consistent. Steps 2) and 3) are
both guaranteed to decrease so the method makes local Fig. 1. Given Data
improvements to an arbitrary clustering until it is no longer
possible to do so. To see that Step 3) does in fact decreases

¢, it is helpful to recall a standard result from linear algebra.
The k-means clustering method is attractive in practice
because it is simple and it is generally fast. Unfortunately,

it is guaranteed only to find a local optimum, which can often
be quite poor.

B. The k-means++ clustering method 2

The k-means clustering method begins with an arbitrary set
of cluster centers. The k-means++ clustering method proposes 1
for specifically choosing these centers. At any given time,
let D(x) denote the shortest distance from a data paint
to the closest center we have already chosen. Then, the fol-

lowing clustering method is defined as k-means++ clustering 0 1 2 3 4 5
method[6].
1a) Choose an initial center; uniformly at random from Fig. 2. Global Optimal Clustering Case

X-
1b) 1b) Choose the next centey by the following.
a) Find a real valug uniformly at random. The value A. Problem for k-means and k-means++ clustering methods

satisfies the following equation We have 6 points data which consistsgf i = 1,...,6 and
0<y< Z D(x)2. thesg points are .divided into two clusters. Figur'e 1 shows these
-7 6 points. And Figure 2 shows the global optimal clustering
result for these 6 points data. The first cluster consists of
b) Find x; satisfying the following equation. Select{x,, x5, x4, x5} and the other cluster consists{ofs, x5 }. We
X; as a cluster centat;. assume that clustering methods can find the global optimal
clusters. However, the k-means clustering method generates
bad clusters ifxy andxs are chosen as initial cluster centers
c; andc,. Figure 3 shows local optimal clusters, which are bad

1c) Repeat Step 1b) until we have chosen a totél cénters. )
) clusters. The k-means++ clustering method was developed to
Step 2)-4) proceed as with the standard k-means clusterigg:q this bad clustering.

method. We call the weighting used in Step 1b) simpiy**
weighting”.

XEX

D(x;-1)* <y < D(x;).

However, the k-means++ clustering method sometimes gen-
erates bad clusters because it depends on choice of the initial
centerc,. The initial centerc, is chosen uniformly at random
from y.

This section describes a problem for k-means clustering and
k-means++ clustering methods. Then, we proposes k-medhs
combined with Independent Component Analysis (ICA) basedThe k-means clustering method begins with an arbitrary set
seeding method. of cluster centers. The k-means++ clustering method begins

Ill. PROPOSEDMETHOD

The k-means combined with ICA based seeding method
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preliminary experiments. We found that the k-means clustering
method combined with ICA based seeding method is accurate.

3 A. Datasets

We evaluated the performance of k-means clustering, k-
means++ clustering and the proposed methods on three data
2 sets of UCI Machine Learning repository and a dataset of
the ODP Web corpus. The first data séis, consists of 50
samples from each of three species of Iris flowers (Iris setosa,
1 Iris virginica and Iris versicolor). Four features were measured
from each sample, they are the length and the width of sepal
and petal. Based on the combination of the four features,
0 0 1 P 3 4 5 Fisher developed a linear discriminant model to determine
which species from these four measurements. It is used as
a typical test for many other classification techniques.

The second datasetyine, is the results of a chemical
analysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the
guantities of 13 constituents found in each of the three types
of wines.

The third datasesoybean-smalis for four soybean disease
diagnosis. The dataset is consists of 47 samples and 35
attributes.

The forth dataset is th©DP Web corpusiataset for our
test experiment. The ODP Web corpus dataset consists of 12
directories, 247 samples, and 344 attributes.

Fig. 3. Local Optimal Clustering Case

B. Evaluation metrics

We used Normalized Mutual Information as a metric to eval-
uate the qualities of clustering outputs of different methods.
The Normalized Mutual Information measures the consistency
of the clustering output compared to the ground truth. It
Fig. 4. The Concept of our proposed method reaches the maximum value of 1 only if the membership
perfectly matche®, and the minimal zero if the assignments
of ¢. and ¢, are independent. The membership function

with a small arbitrary set of cluster centers. As stated abov; (%), the mapping of a poink to one of thek clusters.
we propose a method for specifically choosing these centete membershig, (x) represents the true cluster label far
At any given time, we can get independent components(lC%?rma”yv the Normalized Mutual Information is the following
from given datax. Then, we define the following seedinggduation.

method. MI
la) Extractk independent component&,,,, m=1,...,k 97 max(H (¢g), H(de))
from given datax.
1b) Choose an initial center;, selectinge; = x’ € x with WhereMI(¢,, ¢.) denotes

minimum F&X. - o
e nex 5 )
1c) Choose the next center, selectingc; = x’ € x with MI(¢y, ¢e) = Pg.c(is g 10g LT
minimum ; = pg(l)pc(J)

T
1d) Repeat Step ic) until we have chosen a total oénters. ) is

Step 2)-4) proceed as with the standard k-means clusterlné g )

method. Flgure 4 sh(_)ws the concept of t_he k-means clustering H(g,) = Zpg i) log _

method combined with ICA based seeding method. py()

IV. EXPERIMENTS and H(¢.) denotes
To evaluate k-means clustering, k-means++ clustering and 1
the proposed method in practice, we implemented and tested H(¢.) = ch(j) log .
them in matlab. In this section, we discuss the results of these pe(d)
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The p, (i) is the percentage of points in clustéraccording

EXPERIMENTAL RESULTS FORIris DATASET

TABLE |

to the ground truth, i.epy(i) = M. Similarly,

> (Do) method NMI with max NMI | min NMI | avrg NM1
N 2y WP (i) =g AN min variance
= == 20 2 and is the percentage of
pe(J) n d pg.c(i, 7) percenag k-means 0.751 0.751 0532 0.703
points that belong to clusterin ¢, and also clustey in ¢, KmeansiT 0751 0751 0532 0749
i 2oy 20y Wee (1) =) (e (1) —5) : - : :
.. pg,c(i, J) = n : [ICA [ ot [ - [ - [ -
The above defined metrics were used to evaluate the accu- TABLE Il
racy of the clustering methods. EXPERIMENTAL RESULTS FORWINE DATASET
method NMI with max NMI | min NMI | awrg NM1
C. Experimental results min variance
k-means 0.429 0.429 0.387 0.418
The k-means and k-means++ clustering methods were eadhmeans++ 0.429 0.429 0.387 0.418
run 100 times with different initializations over all three ICA [ 0429 ] - [ - [ -
datasets. The proposed method was run only one time be- TABLE 11l

cause it can set up a unique initial seeding. Table | lists

EXPERIMENTAL RESULTS FORSOybean-Smau)ATASET

the experimental results of the iris dataset, Table Il lists thémethod NMT with | max NMT [ min NMT | awg NMT
experimental results of the wine dataset, and Table IlI Iistsg m'”ovggince 1000 Teig T

. ‘-nmeans . . . .
the experimental results of the soybeanjsmall dataset. Thege ————— 0711 1000 0711 0806
tables have the averageMM I, the maximumNMI, the —z& [ o7l | - [ - [ -
minimum NM1I, and the NMI when the clusters achieved TABLE IV

minimum variance. Tables | and Il show that the proposed

method outperforms both the k-means clustering method

EXPERIMENTAL RESULTS FORODP Web corpu®ATASET

n
method

. NMI with max NMI | min NMI | avrg NMI
the k-means++ clustering method. In Tables | and II, the min variance 9
NMTI of our proposed method is as same as M&/1 of k-means 0.383 0.421 0.341 0.385
the maximum performance of the k-means clustering methad-means++ 0.374 0.432 0.358 0.388
0% | - [ - [ - |

and the k-means++ clustering method and is achieved by ohlifA [
one initial seeding. Table Il shows that th€A/1 of our
proposed method is the same as thé/I of the k-means
clustering method and k-means++ clustering method when V. CONCLUSION

the clusters achieved minimum variance. This situation showswe proposed a method that combines k-means clustering
that the performance of our proposed mfathod Is as Same{}f@thod with ICA based seeding method. From our experi-
the performance of the k-means clustering method and ental results, our proposed method performed the same as

k-means++ clust'ering' methOd for the §oybe§n—small datas(ﬁlbetter than the k-means clustering and k-means++ clustering
And the NMI with minimum variance is achieved by onlyethods. For our future work, we plan the followings.

one initial seeding. ApDlY th d hod to diff Web d d
The k-means clustering and k-means++ clustering methodsl) bgr?c{]r:]:rkpcrjc;?g:sts method to dilierent Web data an
were each run 100 times with different initializations for the X ) .
ODP Web corpus dataset. The proposed method was run) Theoretically analyze the computational cost of the
only one time because it can set up a unique initial seeding. proposed method. .
Table IV lists the experimental results of the ODP Web 3) Devglop a method for finding clusters that are on only
corpus dataset. The maximuM M I of k-means clustering one independent component.
method was 0.421 and the minimuMM I was 0.341. The
maximum N M I of k-means++ clustering method was 0.43 ]
and the minimumN M I was 0.358. Table IV shows that the
NMI of our proposed method is better than theM/ I of e L ization in poiEEE T i
_ . _ - . P. Lloyd, “Least squares quantization in pcl ransactions on
k-means clusterlng and k means++ _clustenng methods wr{éhmformation Theoryvol. 28, no. 2, pp. 129-136, 1982.
the clusters achieved minimum variance for the ODP WQ@] P. K. Agarwal and N. H. Mustafa, “k-means projective clustering,” in
corpus dataset. The maximuMM I of k-means clustering ProceedirFl)g_S of tlhe tV\f/ednt%/-Lhird ACMt SIG[\II\/IOD\-(SIEAI\ICYT-E?AAFECVmDO-
. _ . Slum on Principles of database SystemsiNew YOrk, y .
method is better than théJMI_ of the_k_ means glusterlng Press, 2005, pp. 155-165.
method when the clusters achieved minimum variance. HOwt R. Herwig, A. Poustka, C. Miler, C. Bull, H. Lehrach, and J. O'Brien,
ever, we generally cannot provide true cluster da¥al/I “L?r%e-scalleoggﬁ;elggg logggdna-fingerprinting dat&enome Research,
. . : . . ~ vol. 9, pp. — , .
Wlth.mll’.llmum variance is the most important for real Wor"fs P. Berkhin, “Survey of clustering data mining techniques,” Accrue Soft-
applications. Therefore, Table IV shows that the proposed ware, San Jose, CA, Tech. Rep., 2002.
method outperforms both k-means clustering and k-meansi} D. Arthur and S. Vassilvitskii, *k-means++: the advantages of careful
clustering methods for the ODP Web corpus dataset. And the seeding,” inProceedings of the eighteenth annual ACM-SIAM symposium

. .. . . i L on Discrete algorithms, New Orleans, Louisiana, USA: Society for
NMI with minimum variance is achieved by only one initial  Industrial and Applied Mathematics, 2007, pp. 1027-1035.
seeding.
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