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Abstract—The k-means method is a widely used clustering
technique because of its simplicity and speed. However, the
clustering result depends heavily on the chosen initial value.
In this report, we propose a seeding method with independent
component analysis for the k-means method. Using a bench-
mark dataset, we evaluate the performance of our proposed
method and compare it with other seeding methods.
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I. INTRODUCTION

Clustering is one of the classic problems in machine
learning and computational geometry. In the popular k-
means formulation, one is given an integer k and a set of
n data points in Rd. The goal is to choose k centers so as
to minimize the sum of the squared distances between each
point and its closest center.
Solving this problem exactly is NP-hard, even with just

two clusters [1], but twenty-five years ago, Lloyd[2] pro-
posed a local search solution that is still very widely used
today (see for example [3], [4]). Indeed, a recent survey
of data mining techniques states that it ”is by far the most
popular clustering algorithm used in scientific and industrial
applications”[5].
Usually referred to simply as k-means, Lloyd’s algorithm

begins with k arbitrary centers, typically chosen uniformly
at random from the data points. Each point is then assigned
to the nearest center, and each center is recomputed as the
center of mass of all points assigned to it. These two steps
(assignment and center calculation) are repeated until the
process stabilizes.
One can check that the sum of the squared distances

between each point and its closest center is monotonically
decreasing, which ensures that no clustering is repeated
during the course of the algorithm. Since there are at most
kn possible clusterings, the process will always terminate.
In practice, very few iterations are usually required, which

makes the algorithm much faster than most of its competi-
tors.
Unfortunately, the empirical speed and simplicity of the

k-means algorithm come at the price of accuracy. There are
many natural examples for which the algorithm generates
arbitrarily bad clusters. Furthermore, these examples do not
rely on an adversarial placement of the starting centers, and
the ratio can be unbounded with high probability even with
the standard randomized seeding technique.
In this paper, we propose a way of initializing k-means by

choosing Independent Component Analysis based starting
centers. We also provide preliminary experimental data
showing that in practice, our proposed method really does
outperform k-means and k-means++ in terms of both accu-
racy and speed.

II. RELATED WORKS

In this section, we formally define the k-means problem,
as well as the k-means and k-means++ algorithms.
For the k-means problem, we are given an integer k and

a set of n data points χ ⊂ Rd. We wish to choose k centers
C so as to minimize the potential function,

φ =
∑

x∈χ

min
c∈C

‖x− c‖2.

Choosing these centers implicitly defines a clustering for
each center, we set one cluster to be the set of data points that
are closer to that center than to any other. As noted above,
finding an exact solution to the k-means problem is NP-hard.
Throughout the paper, we will let Copt denote the optimal
clustering for a given instance of the k-means problem, and
we will let φopt denote the corresponding potential. Given
a clustering C with potential φ, we also let φ(A) denote
the contribution of A ⊂ χ to the potential (i.e., φ(A) =∑

x∈Aminc∈C ‖x− c‖2).
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A. The k-means algorithm
The k-means method is a simple and fast algorithm that

attempts to locally improve an arbitrary k-means clustering.
It works as follows.
1) Arbitrarily choose k initial centers C = c1, . . . , ck.
2) For each i ∈ {1, . . . , k}, set the cluster ci to be the
set of points in χ that are closer to ci than they are
to cj for all j �= i.

3) For each i ∈ {1, . . . , k}, set ci to be the center of
mass of all points in Ci: ci = 1

|Ci|
∑

x∈Ci
x.

4) Repeat Steps 2) and 3) until C no longer changes.
It is standard practice to choose the initial centers uniformly
at random from χ. For Step 2), ties may be broken arbitrarily,
as long as the method is consistent. Steps 2) and 3) are
both guaranteed to decrease φ, so the algorithm makes local
improvements to an arbitrary clustering until it is no longer
possible to do so. To see that Step 3) does in fact decreases
φ, it is helpful to recall a standard result from linear algebra
(see [14]).
The k-means algorithm is attractive in practice because

it is simple and it is generally fast. Unfortunately, it is
guaranteed only to find a local optimum, which can often
be quite poor.

B. The k-means++ algorithm
The k-means algorithm begins with an arbitrary set of

cluster centers. We propose a specific way of choosing these
centers. At any given time, let D(x) denote the shortest
distance from a data point x to the closest center we have
already chosen. Then, we define the following algorithm,
which we call k-means++[6].
1a) Choose an initial center c1 uniformly at random from

χ.
1b) Choose the next center ci, selecting ci = x′ ∈ χ with

probability D(x′)2∑
x∈χ

D(x)2
.

1c) Repeat Step 1)b until we have chosen a total of k
centers.

Step 2)-4) proceed as with the standard k-means algorithm.
We call the weighting used in Step 1b) simply “D2 weight-
ing”.

III. PROPOSED METHOD
This section describes a problem for k-means and k-

means++ algorithms. Then, we proposes k-means with Inde-
pendent Component Analysis(ICA) based seeding algorithm.

A. What is a problem for k-means and k-means++ algo-
rithms
Now, we have 6 points data which consist of xi, i =

1, . . . , 6 and these points are divided into two clusters.
Figure 1 shows these 6 points. And Figure 2 shows the
global optimal clustering result for these 6 points data.
The first cluster consists of {x1,x2,x4,x5} and the other
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Figure 1. Given Data
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Figure 2. Global Optimal Custering Case

cluster consists of {x3,x6}. We are expecting that clustering
algorithms can find the global optimal clusters. But, k-means
algorithm generates bad clusters, if x2 and x5 are chosen
as initial cluster centers c1 and c2. Figure 3 shows local
optimal clusters, which are bad clusters. The k-means++
algorithm was proposed to avoid this bad clustering. But,
the k-means++ algorithm sometimes generates bad clusters,
because the algorithm depends on choosing the initial center
c1. The initial center c1 is chosen uniformaly at random
from χ.

B. The k-means with ICA based seeding algorithm

The k-means algorithm begins with an arbitrary set of
cluster centers. The k-means++ algorithm begins with a little
bit arbitrary set of cluster centers. We propose a specific
way of choosing these centers. At any given time, we can
get independent components(ICs) from given data x. Then,
we define the following algorithm.
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Figure 3. Local Optimal Clustering Case
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Figure 4. The Concept of our proposed method

1a) Extract k independent components ICm, m =
1, . . . , k from given data x.

1b) Choose an initial center c1, selecting c1 = x′ ∈ χ
with minimum IC1·x′

|IC1||x′| .
1c) Choose the next center ci, selecting ci = x′ ∈ χ with

minimum ICi·x′
|ICi||x′| .

1d) Repeat Step 1c) until we have chosen a total of k
centers.

Step 2)-4) proceed as with the standard k-means algorithm.
Figure 4 shows the concept of the k-means with ICA based
seeding algorithm.

IV. EXPERIMENTS

In order to evaluate k-means++ and the proposed method
in practice, we have implemented and tested them in matlab.
In this section, we discuss the results of these preliminary
experiments. We found that the k-means with ICA based

seeding makes good performance of both the accuracy and
the speed.

A. Data sets
We evaluated the performance of k-means, k-means++

and the proposed method on three data sets of UCI Machine
Learning repository. The first data set, iris, is consists of
50 samples from each of three species of Iris flowers (Iris
setosa, Iris virginica and Iris versicolor). Four features were
measured from each sample, they are the length and the
width of sepal and petal. Based on the combination of the
four features, Fisher developed a linear discriminant model
to determine which species from these four measurements.
It is used as a typical test for many other classification
techniques.
The second dataset, wine, is the results of a chemical anal-

ysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the
quantities of 13 constituents found in each of the three types
of wines.
The third dataset, soybean-small, is for four soybean

disease diagnosis. The dataset is consists of 47 samples and
35 attributes.

B. Evaluation metrics
We used Normalized Mutual Information as a metric

to evaluate the qualities of clustering outputs of different
methods. The Normalized Mutual Information measures
the consistency of the clustering output compared to the
ground truth. It reaches the maximum value of 1 only if
the membership φc perfectly matches φg and the minimal
zero if the assignments of φc and φg are independent. The
membership function φc(x), the mapping of a point x to
one of the k clusters. The membership φg(x) represents the
true cluster label for x. Formally, the Normalized Mutual
Information is the following equation.

NMI(φg, φc) =
MI(φg, φc)

max(H(φg), H(φc))
,

where MI(φg, φc) denotes

MI(φg, φc) =
k∑

i=1

k∑

j=1

pg,c(i, j) log
pg,c(i, j)
pg(i)pc(j)

,

H(φg) is

H(φg) =
k∑

i=1

pg(i) log
1

pg(i)
,

and H(φc) denotes

H(φc) =
k∑

j=1

pc(j) log
1

pc(j)
.

The pg(i) is the percentage of points in cluster i according

to the ground truth, i.e. pg(i) =
∑n

l=1
1(φg(xl)−i)

n . Similarly,
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Table I
EXPERIMENTAL RESULTS FOR iris DATASET

avg NMI max NMI min NMI NMI with min variance
k-means 0.70325 0.751485 0.532224 0.751485
k-means++ 0.749295 0.751485 0.532471 0.751485
ICA 0.751485 - - -

Table II
EXPERIMENTAL RESULTS FOR wine DATASET

avg NMI max NMI min NMI NMI with min variance
k-means 0.417794 0.428701 0.3873 0.428701
k-means++ 0.418351 0.428701 0.3873 0.428701
ICA 0.428701 - - -

Table III
EXPERIMENTAL RESULTS FOR soybean-small DATASET

avg NMI max NMI min NMI NMI with min variance
k-means 0.714445 1 0.518038 0.710813
k-means++ 0.806213 1 0.710813 0.710813
ICA 0.710813 - - -

pc(j) =
∑n

l=1
1(φc(xl)−j)

n and pg,c(i, j) is the percentage of
points that belong to cluster i in φg and also cluster j in φc,

i.e. pg,c(i, j) =
∑n

l=1
1(φg(xl)−i)1(φc(xl)−j)

n .
The above defined metrics were used to evaluate the

accuracy of the clustering algorithms.
C. Experimental results
Each of the k-means and k-means++ methods was run

100 times with different initializations over all the datasets.
And the proposed method was run just one time, because
this method does not need an initial value. Table IV shows
the experimental results of iris dataset, Table V shows the
experimental results of wine dataset, and Table VI shows
the experimental results of soybean-small dataset. These
tables have the averaged NMI , the maximum NMI , the
minimum NMI , and the NMI when the clusters achieved
the minimum variance.
Table IV, V show that the proposed algorithm outperforms

both k-means and k-means++ algorithms. In Table IV, V, the
NMI of our proposed algorithm is as same as the NMI
of the maximum performance of the other algorithms and is
achieved by just one calculation.
Table VI shows that the NMI of our proposed algorithm

is as same as the NMI when the clusters achieved the min-
imum variance. This situation shows that the performance
of our proposed algorithm is as same as the performance of
the other algorithms for soybean-small data set.

V. CONCLUSION
This paper proposed k-means with Independent Compo-

nent Analysis(ICA) based seeding algorithm. In our exper-
imental results, our proposed algorithm shows the better

performance than the other algorithms or the performance
of our proposed algorithm is as same as the performance of
the others. In our future work, we will improve our proposed
algorithm to improve the accuracy.
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