
 

 

 

  

Abstract— We propose a method to enable a robot to learn 

simple, parameterized commands, such as “Please switch on 

the TV!” or “Can you bring me a coffee?” for human-robot 

interaction. The robot learns through natural interaction with 

a user in a special training task. The goal of the training phase 

is to allow the user to give commands to a robot in his preferred 

way instead of learning predefined commands from a 

handbook. Learning is done in two successive steps. First the 

robot learns object names. Then it uses the known object names 

to learn parameterized command patterns and determine the 

position of parameters in a spoken command. The algorithm 

uses a combination of Hidden Markov Models and Classical 

Conditioning to handle alternative ways to utter the same 

command and integrate information from different modalities.   

I. INTRODUCTION 

HEN creating robots, that can interact with 

non-experts in everyday tasks, one of the challenges is 

to enable the robot to understand commands given by its user 

in a natural way. This paper describes an ongoing study that 

attempts at solving this problem by making the robot learn 

simple parameterized commands and feedback through 

natural interaction with a user.  

We have already proposed a technique [2] for learning to 

understand positive and negative feedback through 

human-robot interaction. In this paper this method is extended 

to deal with more complex, parameterized utterances. While 

positive and negative feedback utterances do not need to be 

segmented but can be processed as a whole, commands may 

contain different parameters, which need to be handled by the 

system. For example, the command “Put the book on the 

table!” contains an object name and a place name. In order to 

understand the meaning of the whole utterance, the command 

and its parameters need to be segmented. Our system learns 

so-called “command patterns”. That is, it does not try to 

analyze the grammatical structure of a command, but rather 

uses placeholders for the parameters and models the rest of the 

command as a whole. This is less flexible than a real 

grammatical analysis but can be used more easily to model a 

user’s typical ways of uttering commands.  

A lot of research has been done on automatic symbol 

grounding for robots [3][4][9]. Symbol grounding is a 
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complex task in which symbols, such as the words of a natural 

language, are connected with meanings, that is objects, places, 

actions etc. in the real world. It often involves visual 

recognition and naming of objects or actions. Our work has a 

slightly different focus. We concentrate on learning how a 

certain user utters commands and feedback, but assume that 

the robot already knows basic symbolic representations of the 

actions, that it is able to perform and the objects/places, it can 

recognize, like move(objectA, placeB). In order to react to 

natural, multimodal commands and feedback, it needs to learn 

a mapping between these existing symbolic representations 

and commands, object/place names or feedback given 

naturally using speech, prosody and touch. This enables the 

robot to deal with instruction given by the user in his or her 

preferred way. Assuming, that basic grounded symbols 

already exist by the time of the training is a quite strong 

requirement, but this is likely to be the case for typical service- 

or entertainment robots as they normally have a set of built-in 

functions and can visually recognize and manipulate certain 

objects in their environment.  

In this paper we propose a combination of special training 

tasks, which allow a robot to provoke commands and 

feedback from a user, and a two-staged learning algorithm, 

Learning to Understand Parameterized Commands                  

through a Human-Robot Training Task  

Anja Austermann, Seiji Yamada 

W 

 
Fig. 1: Aibo performing Training Task 

The 18th IEEE International Symposium on
Robot and Human Interactive Communication
Toyama, Japan, Sept. 27-Oct. 2, 2009

WeC2.2

978-1-4244-5081-7/09/$26.00 ©2009 IEEE 757



 

 

 

which has been designed to resemble the processes, which 

occur in human associative learning. 

In a real-world scenario, the training tasks, which allow the 

robot to adapt to its user, would have to be performed before 

actually starting to use the robot. In order to allow for a quick 

and easy training, for example in front of the TV/PC screen, 

we use “virtual” training tasks. For our experiments on 

command learning we created an animated virtual living room. 

It is a simplified 3D-model of a living room, which can be 

seen in Fig. 1 and Fig. 2. The virtual living room is projected 

on a white screen and the robot uses motions, sounds and its 

LEDs to show which moves it is making. Appropriate 

animations are shown in the virtual living room for each move. 

In order to learn the correct meaning of its user’s utterances, 

the robot needs to know in advance, which commands the user 

is going to utter. This is ensured by the design of the training 

task. The user is informed about which actions he should make 

the robot perform, by typical and easily recoverable changes 

in the living room, such as a carpet getting dirty or a book 

falling from the shelf. Moreover, the system can display 

thought balloons representing desires of the user like wanting 

to drink a coffee or wanting to know the battery state of the 

robot. Details on the tasks are given in section III.  

Having a robot learn commands from its user instead of 

forcing the user to learn commands to control the robot, has 

different advantages. As it shifts the learning effort from the 

user to the robot, it would be especially desirable for elderly 

people with memory deficits to have a robot adapt to their 

natural way of giving commands and feedback to it. 

II. RELATED WORK 

There are various approaches towards symbol grounding 

and learning to understand spoken utterances, especially 

names of objects or actions and connect them with their visual 

representations. 

Roy [8] proposed a model of cross-channel early lexical 

learning to segment speech and learn the names of objects, 

which are recorded by a camera. He used models of long term 

memory and short time memory to find and learn recurring 

auditory patterns, which are likely to be object names. He used 

insights from infant-word learning and recorded the speech 

samples for training the robot through experiments with 

mothers playing with their infants.  

Iwahashi [4] described a method to learn to understand 

spoken references to visually observed objects, actions and 

commands which are a combination of objects and actions. In 

a second stage, the robot learned to execute the appropriate 

actions that have been demonstrated by the instructor before, 

in response to commands from its instructor. Iwahashi applied 

Hidden Markov Models to learn verbal representations of 

objects and motions perceived by a 3D-camera.   

Steels and Kaplan [10] developed a system to teach the 

names of three different objects to an AIBO pet robot. They 

used so-called “language games” for teaching the connection�
between visual perceptions of an object and the name of the 

object to a robot through social learning with a human 

instructor.   

In [1] and [2] we outlined an approach to enable a robot to 

learn positive and negative feedback from a user through a 

training task. We reached an average accuracy of 95.97% for 

the recognition of positive and negative reward based on 

speech, prosody and touch. The current work is an extension 

of this approach to allow the system to deal with 

parameterized commands. At the moment, we do not use 

actual vision processing but use virtual training tasks, which 

allow the robot to access all features of the task directly 

without additional processing. Learning to understand 

commands through virtual training tasks, instead of teaching 

them, for example, by demonstration has two main advantages. 

It enables the robot to learn commands, which would be 

difficult to teach by demonstration, such as asking the robot 

about its battery status or telling it to switch itself off.  

The training tasks also allow the robot to take over the 

active role in the learning process by requesting specific 

learning tasks for certain objects/places or commands from 

the task server. This enables the robot to systematically repeat 

the training of feedbacks, commands or object/place names 

that have not received sufficient training, yet.  

By combining Hidden Markov Models and classical 

conditioning, our algorithm can handle multiple ways to utter 

the same command and integrate information from different 

modalities.  

III. TRAINING TASK 

The robot learns to understand the user’s commands and 

feedback in a training phase. The design of the training phase 

is a key point for our learning method because it enables the 

robot to provoke commands as well as feedback from the user.  

For training the robot, we use computer-based “virtual” 

training tasks. We implemented a virtual living room which 

shows a simplified 3D model of a living room. It is shown in 

Fig. 2. Virtual training tasks allow the robot to immediately 

access all properties of the task, such as the locations of 

objects etc. through a connection to the task server. Moreover, 

virtual tasks can be solved without time-consuming walking or 

 
Fig. 2: Virtual Living Room. 
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other physical actions, which cannot be performed by the 

AIBO, such as actually cleaning or moving around different 

objects. This is important for our experiments.  

We have implemented a framework, which can easily be 

extended to fit different tasks, robots or virtual characters. The 

virtual living room that we use for our experiments is 

projected to a white screen and the robot uses motions, sounds 

and its LEDs to show which move it is performing (Fig. 1). 

During the training the robot cannot actually understand its 

user but needs to react appropriately to ensure natural 

interaction. This is done by designing the training task in a 

way that the robot can anticipate the user’s commands.  

During the training phase, the robot sends the requests, 

which object, place or command and reward it wants to learn 

to the task server. The task server then visualizes the expected 

command or highlights the requested object/place on the 

screen in a way that the user can understand it easily. It also 

sends relevant information, such as the coordinates of objects 

back to the robot, so that it can, for example, perform a 

pointing gesture to ask for an object or place name.  When the 

user utters a command, the robot can either perform a correct 

or incorrect action to provoke positive or negative feedback 

from the user. This way, the robot is able to explore the user’s 

way of giving different commands as well as feedback.  

The system can only learn verbal representations of simple 

commands consisting of one action and the related objects. 

Table 1 shows the set of commands that the robot learns in our 

experiments along with their parameter signature and an 

example of a sentence that the user might utter. 

 
TABLE 1: COMMAND NAMES AND PARAMETERS 

Command Parameters Example sentence 

move object, place Put the ball into the box. 

bring object Bring me a coffee, please. 

open object Hey AIBO, open the door. 

close object Can you close the window? 

clean object Please clean up the carpet. 

switch on object AIBO, switch on the light. 

switch off Object Switch off the radio. 

charge battery <none> Recharge your battery. 

shutdown <none> Go to sleep. 

show status <none> What is your status? 

stand up <none> Stand up, please. 

sit down <none> Sit down.  

 

The robot first learns names of objects and places, which 

can then be used as parameters when learning command 

patterns. When enough object names are known, the robot 

continues with learning command patterns like “switch the 

<object> on!”, “Please move <object> to <place>” etc. 

In order to enable the robot to learn, the system needs to 

make the user give commands in his preferred way but with a 

predefined meaning. This is done by showing situations in the 

virtual living room, where it is obvious which task needs to be 

performed by the robot. Thought balloons with appropriate 

icons are used to visualize desires of the user, which cannot be 

understood easily from the state of the virtual living room 

alone, such as wanting a coffee or wanting the robot to 

shutdown. Text is not used in order to avoid any influence on 

the wording of the user. Some examples of command 

visualizations and possible commands from the user are:  

- It is getting dark and the light is still switched off  

 Switch the light on! 

- A dirty spot on the carpet 

Clean the carpet, please! 

- A book has fallen off the shelf 

Can you put the book on the shelf?  

- An icon showing a battery and a question mark? 

What is your battery status? 

- A thought balloon showing a battery and a connector 

Go to your charging station! 

IV. LEARNING METHOD  

The learning algorithm is divided into a stimulus encoding 

phase and an associative learning phase. This is modeled after 

natural learning in humans and animals. In the stimulus 

encoding phase, the system trains Hidden Markov Models 

(HMMs) to model command patterns, object/names which are 

used as parameters, as well as positive and negative rewards 

based on speech, prosody and touch stimuli from the user. 

In the associative learning phase, the system associates the 

trained models with a known symbolic representation, 

integrating the date from different modalities. For example, it 

associates an HMM of the utterance “Could you please move 

<A> to <B>” with the known symbolic representation 

move(object, place) or the utterance “Good robot” and a touch 

of the head sensor with positive reward. An example of a data 

structure resulting from this learning process is shown in Fig. 

3. The representation of place and object names is not shown 

in the figure. It can be found in Fig. 4.   

A. Stimulus Encoding 

In the stimulus encoding phase the system trains models of 

its user’s feedback, commands, and object/place references. 

The learning is based on Hidden Markov Models for speech as 

well as for prosody and a simple duration-based model for 

touch. For each command or feedback, given by the user, the 

 
Fig. 3: Example of the Data Structure after Learning. 
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best matching speech, prosody and touch models are 

determined according to the methods, described in the 

following paragraphs. If there is no good existing model, a 

new one is created. Otherwise, the best matching model is 

retrained with the data corresponding to the observed stimulus. 

When retraining has finished, the models are passed on to the 

association learning stage.  

1) Speech 

For learning commands, we assume that speech is the most 

important modality. We distinguish three different kinds of 

utterances, that the speech stimuli encoding needs to deal 

with: positive/negative feedback, names of objects/places and 

command-patterns. Command-patterns can have a variable 

number of slots for inserting object- or place-names like 

“Stand up”, “Clean <object> please” or “Can you move 

<object> to <place>?”. An example of a command structure is 

shown in Fig. 4. The leaves of the tree are trained HMMs. The 

inner nodes are symbolic representations of objects and 

command patterns. The thick lines represent associations, 

learned later in the associative learning phase.  

Feedback-utterances, names of objects/places and 

commands without any parameters can be trained as single 

HMMs. In case of commands with one or more parameters, 

the system needs to model the corresponding command 

pattern using multiple HMMs to allow the insertion of HMMs 

representing objects/places used as parameters, as shown in 

Fig. 4. In order to learn a command pattern consisting of 

multiple HMMs, the system must first determine which parts 

of the utterance belong to the verb pattern itself and which 

parts belong to its parameters. From the training task, the 

system knows which parameters to expect. The algorithm uses 

this information to locate object/place names in the utterance 

by matching the utterance against all HMMs that have an 

existing association to the expected parameters. To do so, a 

grammar for the recognizer is generated automatically from 

the already trained object names. In case of a command with 

two parameters, object1 and object2, the grammar looks as 

follows: 

Object_1 = Utterance1 | Utterance2 | Utterance3 … 

Object_2 = Utterance4 | Utterance5 … 

 

Searchstring =  

([Sil] [Garbage] Object_1 [Garbage]  

Object_2 [Garbage] [Sil] ) | 

([Sil] [Garbage] Object_2 [Garbage]  

Object_1 [Garbage] [Sil] ) 

The utterances 1 to 5 in this grammar are all utterances that 

have an association to either object 1 or object 2. The garbage 

model is trained with all utterances of the speaker. The silence 

model is trained with only background noise. Matching is 

done using HVite, an implementation of the Viterbi algorithm 

in the Hidden Markov Model Toolkit (HTK) [11]. Running 

the recognizer with this grammar returns the positions of the 

parameters in the utterance. The utterance is then cut at the 

boundaries of the detected parameters. All parts that do not 

belong to the name of an object or place are expected to 

belong to the command pattern and used to create or retrain 

HMMs. The places, where object- or place-names have been 

cut out are modeled as slots in the grammar of the utterance 

recognizer. 

To model speech utterances our system trains one 

user-dependent set of utterance HMMs for each of 

object/place names and feedback, and a set of 

HMM-sequences for learning command patterns. As a basis 

for creating these utterance models the system uses an existing 

set of monophone HMMs. It contains all Japanese 

monophones and is taken from the Julius Speech Recognition 

project [5]. 

 As the robot learns automatically through interaction, no 

transcription of the utterances is available. Therefore, an 

unsupervised clustering of perceived feedbacks that are likely 

to correspond to the same utterance is necessary. The system 

solves this problem by using two recognizers in parallel: One 

recognizer tries to model the observed utterance as an 

arbitrary sequence of phonemes.  The other recognizer uses 

the feedback, object/place or command models, trained so far, 

to calculate the best-matching known utterance.  

In case of command patterns each of the parts before, 

between and after parameters is modeled as a separate 

HMM/phoneme sequence as shown in Fig. 4. An appropriate 

 
Fig. 5: Control Flow for Learning Command Patterns. 

 
Fig. 4: Command Data Structure. 
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recognition grammar is used to keep together the parts that 

belong to one command.  

Every time an utterance from the user is observed, first the 

system tries to recognize it with both recognizers. Recognition 

is done by HVite [11]. The recognizers return the 

best-matching phoneme sequence and the best matching 

model of the complete feedback, object name or command 

pattern. Moreover, confidence levels are output for both 

recognition results. The confidence levels, which show the log 

likelihoods per frame of both results, are compared to 

determine whether to generate a new model or retrain an 

existing one.  

In case of an unknown utterance, the phoneme-sequence 

based recognizer typically returns a result with a noticeably 

higher confidence, than the one of the best matching utterance 

model. For a known utterance, the confidence corresponding 

to the best-matching utterance model is either higher or 

similar to the best-matching phoneme-sequence. Therefore, if 

the confidence level of the best-fitting phoneme sequence is 

worse than the confidence level of the best-fitting utterance 

model or less than a threshold better, then the best-fitting 

utterance model is retrained with the new utterance. The 

threshold is determined experimentally from the speech data 

recorded in the experiment. In case of command patterns each 

of the HMMs modeling a part of the command pattern is 

retrained separately with the corresponding part of the 

utterance, which has been determined in the first step.   

If the confidence level of the best-matching phoneme 

sequence is more than a threshold better than the one of the 

best-fitting whole-utterance model, then a new utterance 

model is initialized for the utterance. The new model is 

created by concatenating the HMMs of the recognized most 

likely phoneme sequence to a new HMM. In case of command 

patterns one HMM is created for each part before, in between 

and after the slots for inserting parameters and a grammar 

defines the order of the individual parts as well as the 

positions of the parameters. The new model is retrained with 

the just observed utterance and added to the HMM-set of the 

whole-utterance recognizer. So it can be reused when a similar 

utterance is observed. An overview of the training for learning 

a command pattern is shown in Fig.5. 

During the training phase, utterances from the user are 

detected by a voice activity detection based on energy and 

periodicity of the perceived audio signal. 

 

2) Prosody 

We have implemented the recognition of prosody mainly to 

enhance the learning and recognition of positive and negative 

feedback. As we do not assume, that prosody can be 

effectively used to discriminate between different commands 

or object names, we decided to use only three classes for the 

prosody based recognizer: positive reward, negative reward 

and commands. This can be seen in Fig. 3. While speech and 

touch stimuli are associated with individual commands, 

prosody only discriminates between these three categories. 

For the prosody recognition, utterances are always 

processed as a whole without locating and cutting out 

parameters. The HMMs that we use for interpreting prosody 

are based on features [6] extracted from the speech signal. In 

order to obtain these features, the signal is first divided into 

frames of 32 ms length with 16 ms overlap. For each frame, 

the system calculates a feature vector containing the pitch, the 

pitch difference to the previous frame, the energy, the energy 

difference to the previous frame and the energy in frequency 

bands 1-n. The sequence of feature vectors is used for training 

the HMMs.  

Additionally, the algorithm calculates some global 

information based on all frames belonging to one utterance. 

These are the average, minimum and maximum, range and 

standard deviation and the average difference between two 

frames for pitch as well as energy. For determining, which 

HMM is trained with which utterances, the system uses these 

global features. Utterances with similar global features are 

clustered and one HMM is trained for each cluster.  

 

3) Touch 

The user can also interact with the robot using its touch 

sensors on the head and on the back. We assume that touch is 

more important for learning rewards than for learning 

commands. However, we want to give the users the possibility 

to use touch to express commands: e.g. use a long press of the 

back touch sensor to put the robot into sleep mode. As we do 

not assume, that users will use touch to encode names of 

object or places, no associations are learned between touch 

patterns and objects/places. 

To encode touch, we use its duration and whether the head 

or the back sensor was touched.�We use three categories for 

short (< 0.5 s), medium (0.5s < x < 1 s) and long ( > 1 s) 

touches.  

For learning to understand positive or negative feedback, 

we did not take into account the exact sequence of short, 

medium and long touches in our previous approach. However, 

if the user employs touch to encode commands, the exact 

sequence may be important.  The observed sequences of short, 

medium and long touches representing a command or 

feedback are encoded as strings, such as “LB,SH,LH” for a 

long touch of the back sensor, a short touch of the head sensor 

and a long touch of the head sensor.  

A table is used to store all known touch patterns. For each 

observed command or feedback the system tries to find the 

pattern in the table and creates a new entry if necessary. The 

entry number is then passed on to the associative learning 

stage.  

B. Associative Learning 

We use classical conditioning to establish associations 

between the known symbolic representations of actions, 

rewards and objects/places and the trained HMMs for 

command patterns and parameters. As in our previous 

approach to learning positive and negative rewards [2], we 
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employ the Rescorla-Wagner model [7] to learn and update 

the associations.  

The symbolic representations of feedback, commands and 

their parameters are used as unconditioned stimuli. The 

HMMs, encoding stimuli coming from the user, are used as 

conditioned stimuli. The three different kinds of stimuli - 

feedback, command patterns and parameters - are handled 

separately from each other.  

For speech, associations to HMMs are learned for the 

symbolic representations of feedback, of objects/places and 

for the different commands. For prosody, associations are 

learned toward either positive or negative feedback or the 

symbol “command”, which stands for any command. This way, 

prosody helps to distinguish between feedback and commands 

from the user. Touch models can be associated with positive 

or negative feedback as well as with different command 

patterns, but not with objects/places, as we do not assume, that 

users encode object or place descriptions into touch patterns.  

Classical conditioning has different desired properties, such 

as blocking, secondary conditioning and sensory 

preconditioning which allow the system to integrate and 

weight stimuli from different modalities, emphasize salient 

stimuli and establish connections between multimodal 

conditioned stimuli, e.g. between certain utterances and 

touches or prosody patterns.  

V. EXPERIMENTS 

We are currently conducting experiments to evaluate the 

performance of our learning method. The experimental setting 

is shown in Fig. 6. The system records speech using a 

close-talk microphone. Video is recorded for later integration 

of gesture recognition.  

The participants are instructed to teach the robot in two 

phases. In the first phase, they teach object- and place names 

to the robot. After the object learning has finished, the 

experiment continues with the teaching of commands. The 

users are instructed to utter commands, which match the 

situation shown in the “virtual living room” scene and give 

positive or negative feedback depending on whether the robot 

has reacted correctly or not.  

VI. DISCUSSION 

We proposed an approach to learn parameterized 

commands for human-robot interaction. The main restriction 

of our approach is that it is only applicable as long as the 

number of commands that the robot needs to understand does 

not grow too large. Otherwise, learning commands would 

probably be too time-consuming for real-world use. The 

learning of object names with our approach can continue after 

the training phase in a real environment provided the robot can 

visually identify objects. However, the learning of commands 

heavily relies on the virtual training tasks to make the user 

utter the commands that the robot wants to learn.  

At the moment, the system can only deal with names of 

objects or places, not with descriptions. “The blue cup” or 

“the cup on the table” would be learned as one object name. In 

order to allow for more flexible instructions from the user, it is 

necessary to extend our learning method to enable the system 

to learn prepositions and certain attributes, such as colors, 

which are commonly used to distinguish different objects of 

the same class. Pointing gestures are also frequently used to 

disambiguate or even replace spoken object references. 

Therefore, integrating basic pointing gesture recognition is 

one of the priorities of our ongoing work.  
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Fig. 6: Experimental Setting. 

762


