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Abstract—This paper proposes a method of learning a
similarity matrix from pairwise constraints for interactive
clustering. The similarity matrix can be learned by solving
an optimization problem as semi-definite programming where
we give additional constraints about neighbors of constrained
pairwise data besides original constraints. For interactive
clustering, since we can get only a few pairwise constraints
from a user, we need to extend such constraints to richer ones.
Thus this proposed method to extend the pairwise constraints
to space-level ones is effective to interactive clustering. First we
formalize clustering with constrained similarity learning, and
then introduce the extended constraints as linear constraints.
We verify the effectiveness of our proposed method by applying
it on a simple clustering task. The results of the experiments
shows that our method is promising.

I. INTRODUCTION

Interactive clustering is a significant method to realize

intelligent Web interaction because it is very useful to

interactive visualization, data mining, data analysis of the

web[Wu04]. Interactive clustering consists of two main

techniques: active learning and constrained clustering. The

active learning is for selecting effective data, which are

judged by a user and then used as constraints. Also the

constrained clustering is used to categorize the data under

such constrains from a user. The common requirement in the

both technique is to cope with a few constraints form a user.

In this paper, we propose constrained clustering to utilize

such a few constraints as much as possible by extending

a few constraints to richer ones. Semi-Supervised learning

that makes classifiers or clusters from a little supervised

information and a lot of unlabeled data has been researched

vigorously in recent years. Constrained clustering is one of

such learning problems. In the typical setting of constrained

clustering, several numbers of pairwise data are given as

either must-link or cannot-link constraints. The pair of must-

link data must be in the same cluster. On the other hand,

the pair of cannot-link data cannot be in the same cluster.

One simple use of these constraints is to build a procedure

into clustering algorithms to check whether temporal clusters

break constraints or not. COP-Kmeans proposed by Wagstaff

[Wagstaff 01] is such a representative method. COP-Kmeans

is a modified version of the K-means algorithm. It first

selects cluster centers, and second allocates each data to

one of those centers not to break given constraints, i.e. not

to allocate pairs of data with must-link to different clusters

and not to allocate pairs of data with cannot-link to the

same cluster. This approach is simple but it becomes too

difficult to make consistent clusters with constraints when

the number of must/cannot-link pairs increases. Since COP-

Kmeans does only greedy search, its clustering procedure

may stop on the way.

Meanwhile, another approach uses constraints to modify

similarities between data as similarities of must-link pairs

are forced to be large and similarities of cannot-link pairs

are forced to be small. There are several methods to re-

alize this approach [Klein 02], [Shwartz 04], [Davis 07],

[Tang 07], [Hoi 07], [Li 08]. For example, Klein et. al

proposed a clustering algorithm to deal with space-level

constraints in addition to ordinary instance-level constrains

with must/cannot-links [Klein 02]. They claimed neighbors

around data constrained by must/cannot-links should be

constrained in the similar way to the data, and developed

concrete methods to propagate space-level constrains by

satisfying triangle inequality with all-pairs-shortest-paths

and utilizing complete-link hierarchical agglomerative clus-

tering. Li et. al proposed a method to learn a kernel matrix

that is obtained by solving an optimization problem as

semi-definite programming. They integrate must/cannot-link

constraints into the optimization problem to propagate local

constraints to the whole kernel matrix. However how the

must/cannot-link constraints influence the kernel value of the

other pairs is not clear though it ensures the kernel value of

constrained pairwise data.

Based on these two methods, we propose a similarity

learning method that produces a similarity matrix. Though

our method obtains the similarity matrix by solving an

optimization problem as the same way Li et. al do, we

impose additional constraints about neighbors of constrained

pairwise data on it. By imposing the additional constraints,

similar data move together when given must/cannot-link to

one of them. This approach is very similar to Klein’s in terms

of propagating space-level constrains under a complete-link

hierarchical agglomerative clustering, however our approach

does not need a special clustering algorithm and is indepen-

dent of a clustering algorithm. Also our method can control

coverage of the propagation by changing the number of

neighbors.
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Figure 1. Difference of neighbor’s movement between base and proposed method

In the following sections, we first explain about similarity

learning and formalize it as semi-definite programming in

section 2. Then we describe about our proposed method that

impose additional constraints to the original optimization

problem in section 3. section 4 shows experimental results

where obtained similarity matrix is applied on a simple

clustering task. Finally, we conclude our work in section

5.

II. SIMILARITY LEARNING

In this section, we formalize a similarity learning as a

semi-definite programming.

Let P denote a data collection where each data �pi ∈
Rm(i = 1, ..., n) is a vector of length m. Let S ∈ Rn×n

denote its similarity matrix where each sij(0 ≤ sij ≤ 1)
is a similarity between �pi and �pj . Pairwise constraints are

given as follows.

M = {(i, j) | (�pi, �pj) is a must-link pair}
C = {(i, j) | (�pi, �pj) is a cannot-link pair}

The objective of similarity learning is to create a new

similarity matrix K that satisfies above constraints. We for-

malize an optimization problem to obtain K as semi-definite

programming. Before formalizing, we describe about the

graph Laplacian that is used as coefficient for K in the

optimization problem. Let D a diagonal matrix where dii =∑n
j=1 sij . We can define the graph Laplacian L as follows.

L = D − S

Using its normalized version L̄ = I − D− 1
2 SD− 1

2 , we can

formalize an optimization problem as follows:

minK : L̄ • K

s.t. : kii = 1, i = 1, ..., n
kij = 1, ∀(i, j) ∈ M,
kij = 0, ∀(i, j) ∈ C,
K � 0

where L̄•K represents the inner product between L̄ and K.

L̄ • K is calculated as follows.

L̄ • K =
n∑

i=1

n∑

j=1

l̄ijkij

l̄ij is the element of L̄. This objective function measures in-

consistency between the original and new similarity matrix.

Thus the solver of the optimization problem tends to keep

similarities between pairs with no constraints the same value

as far as possible. Pairwise constraints are translated into

kij = 1 for must-link pairs, kij = 0 for cannot-link pairs.

K � 0 means K is a semi-definite matrix. This condition

is necessary to guarantee the solution is a metric on the

Euclidean space. By solving this optimization problem, we

can obtain a new similarity matrix K that is used for semi-

supervised learning.

III. EXTENDING CONSTRAINS FROM PAIRWISE TO

NEIGHBORS

The optimization problem introduced in the previous

section returns a similarity matrix. To satisfy the pairwise

constraints and the semi-definite condition, returned simi-

larity matrix changes from the original one. Although the

purpose of similarity learning is not only to modify simi-

larities between constrained data pairs but also to influence

those constraints to their neighbors, it is not clear how the

influence of constraints are propagated to non-constrained

data. Thus we propose to impose additional constraints

about neighbors of constrained data pairs to the optimization

problem.

We illustrate this desirable effect in Figure 1, where

two pairs of data (one data of red color and two data of

blue color) are constrained as must-link and cannot-link

respectively. Since the original optimization problem con-

siders only the relation between constrained data pairs, the

solution may result the data allocation illustrated in Figure

1(a), where only the data of red color moves. However

we expect that not only constrained data pairs but also
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their neighbors are affected by the constraints illustrated in

Figure 1(b), where the data of red color and its neighbors

(two data of green color maked with black bold rectangle)

move together. To realize the latter phenomena, we impose

additional constraints to the optimization problem. More

specifically, for a data pair (i, j) with must-link or cannot-

link, we impose the following constraints:

kjri
t
≤ −l̄jri

t
, if (i, j) ∈ M

kjri
t
≥ −l̄jri

t
, if (i, j) ∈ C

where kjri
t

(t = 1, .., k) is neighbors of �pj , and −l̄ij =
sij√
diidjj

is a value of regularized sij . In the same manner,

we impose the following constraints about �pj .

kirj
t
≤ −l̄irj

t
, if (i, j) ∈ M

kirj
t
≥ −l̄irj

t
, if (i, j) ∈ C

These constraints means not only �pj but also its neighbors

kjri
t

move closer to �pi if (i, j) is must-link, and they move

farther if (i, j) is cannot-link. After all, the final optimization

problem is formalized as follows.

minK : L̄ • K

s.t. : kii = 1, i = 1, ..., n
kij = 1, ∀(i, j) ∈ M,
kij = 0, ∀(i, j) ∈ C,
kirj

t
≤ −l̄irj

t
, kjri

t
≤ −l̄jri

t
, ∀(i, j) ∈ M

kirj
t
≥ −l̄irj

t
, kjri

t
≥ −l̄jri

t
, ∀(i, j) ∈ C

K � 0

The fourth and fifth constraints are different from the orig-

inal problem. By imposing these constraints we intend to

ensure that similarities between constrained pairwise data

and their neighbors changes in the same way.

IV. EXPERIMENTS

In this section, we evaluate our proposed method on

a clustering task. We use a dataset tr31 from evaluation

datasets for the CLUTO system. The tr31 is a document

dataset derived from TREC collection. It consists of 926

documents and 7 categories. We use cosine distance for the

initial similarity measure, and the SDPA package1 for the

optimization tool, and K-medoids algorithm for clustering.

The procedure including K-medoids algorithm is described

below.

1) Calculate the initial similarity matrix S.

2) Solve the optimization problem described in section 3

and obtain a new similarity matrix K.

3) Select initial cluster centers ci(i = 1 ∼ Nk)
4) For each data pi, sort ci in descending order of the

similarity between pi and ci. Assign pi to the top ci.

1http://sdpa.indsys.chuo-u.ac.jp/sdpa/

5) After assignment finished, calculate whole similarity

Ddescribed below.

D =
Nk∑

t=1

∑

pi∈Ck

(pi − ct)2

where Ck is a cluster. Let D as Dorig

6) For each pi, replace pi and each ci and calculate Dtmp.

If Dtmp−Dorig < 0, stock the pair (pi, ci). Then find

the pair (p∗i , c
∗
i ) that produce the smallest Dtmp −

Dorig . Replace p∗i and c∗i . Let Dorig = Dtmp(p∗i , c
∗
i ),

and return procedure 2. If no pair (pi, ci) produce

Dtmp − Dorig < 0, this algorithm stops and return

the temporal clusters.

We compare the following two methods to investigate the

effect of additional constraints we impose.

• A method with constraints about must-link and cannot-

link that are originally given.(KK-MEANS)

• A method with constraints about neighbors in addi-

tion to the original must-link and cannot-link (NKK-

MEANS). In the experiments, we set k = 1 for the

number of neighbors to consider as constraints.

We use Normalized Mutual Information (NMI) as the

performance measure. This measure is defined as follows.

NMI(C, T ) =
I(C, T )√

H(C)H(T )

where C is the set of clusters returned by the k-means

algorithm, and T is the set of true clusters. I(C, T ) is the

mutual information between C and T , and H(C) and H(T )
are the entropies.

We test several numbers of constraints. For each number

of constraints, constrained data pairs are randomly generated

10 times. Initial seeds for K-means are also randomly gen-

erated 10 times. Thus the evaluated values are the average

of total 100 results. Table I shows the results. For the

experiments of NKK-MEANS, we change the number of

neighbors for the additional constraints (represented by t
in the table). The performance of our proposed method

NKK-MEANS is better than KK-MEANS at evary number

of constraints when t = 1. NKK-MEANS needs only 50

constraints to achieve KK-MEANS’s performance with 100

constraints. This property is very useful if we do not have

enough number of constraints such as interactive clustering.

However we need more experiments and analysis to realize

the reason that the performance degrades as t increases for

every number of constraints.

V. CONCLUSION

We proposed a method of learning a similarity matrix

from pairwise constraints. Our method is based on the

same approach proposed by Li et.al, which produces a

similarity matrix by solving an optimization problem as

semi-definite programming. However we impose additional
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Table I
RESULTS

Num. of constraints KK-MEANS NKK-MEANS

t=1 t=2 t=3 t=4 t=5
10 0.076 0.150 0.100 0.08 0.03 0.06
50 0.173 0.225 0.224 0.214 0.189 0.185
100 0.222 0.239 0.235 0.207 0.231 0.211
200 0.254 0.288 0.240 0.235 0.258 0.270
500 0.304 0.331 0.308 0.320 0.342 0.314

constraints that neighbors of constrained pairwise data are

also influenced by the constraints, i.e. neighbors of a must-

linked pair also become similar to the pair, and neighbors

of a cannot-link pair also become not-similar. Experimental

results on a simple clustering task shows that our approach

is promising though we must test it on other test beds and

analyze in detail.

In future work, we have a plan to conduct systematic

experiments to evaluate our method in documents clustering

using large data bases. Also we will investigate the influence

of the number of neighbors and develop how to control it,

and find out more effective constrains on the neighbors.
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