
A Genetic Algorithm for Optimizing Hierarchical Menus

Shouichi Matsui and Seiji Yamada

Abstract— Hierarchical menus are widely used as a standard
user interface in modern applications that use GUIs. The
performance of the menu depends on many factors: structure,
layout, colors and so on. There has been extensive research
on novel menus, but there has been little work on improving
performance by optimizing the menu’s structure. This paper
proposes algorithms based on the genetic algorithm (GA) and
the simulated annealing (SA) for optimizing the performance of
menus. The algorithms aim to minimize the average selection
time of menu items by considering the user’s pointer movement
and search/decision time. We will show the results on a static
hierarchical menu of a cellular phone as an example where a
small screen and limited input device are assumed. We will also
show performance comparison of GA-based algorithm and the
SA-based one by using wide variety of the useage patterns.

I. INTRODUCTION

Hierarchical menus are one of the primary controls for
issuing commands in GUIs. These menus have submenus as
menu items and display submenus off to the side when they
are selected. Cellular phones that have only small displays
show submenus as new menus, as shown in Fig. 1. The
performance of the menu, i.e., the average selection time of
menu items, depends on many factors, including its structure,
layout, and colors.

There have been many studies on novel menus (e.g.,
[2], [3], [7]), but there has been little work improving the
performance of a menu by changing its structure [1], [5],
[6], [11], [12]. A very simple search method gave a fairly
good improvement [1]; therefore, we can expect further
performance improvements by optimizing the structure.

There have been many studies on menu design, menu
layout from the standpoint of the user interface. Francis et
al. were the first to optimize a multi-function display that
was essentially the same as a hierarchical menu by using
Simulated Annealing (SA) [5], [6]. Quiroz et al. proposed
an interactive evolution of a non-hierarchical menu using an
interactive evolutionary computation (IEC) approach.

Liu et al. applied a visual search model of to menu design
[11]. They used the Guided Search (GS) model to develop
menu designs. They defined a GS simulation model for a
menu search task, and estimated the model parameters that
would provide the best fit between model predictions and
experimental data. Then they used an optimization algorithm
to identify the menu design that minimized the predicted
search times according to predefined search frequencies of
different menu items, and they tested the design. Their results

S. Matsui is with the System Engineering Research Labora-
tory (SERL), Central Research Institute of Electric Power Industry
(CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan; email: mat-
sui[at]criepi.denken.or.jp.

S. Yamada is with the National Institute of Informatics, 2-1-2 Hitotsub-
ashi, Chiyoda, Tokyo 101-8430, Japan; email: seiji[at]nii.ac.jp.

Top Menu
 Mail
 Web
 ...Mail Web

Fig. 1. Example of Hierarchical Menu for a Cellular Phone.

indicate that the GS model has the potential to be part of a
system for predicting or automating the design of menus.

Amant et al. showed the concepts to support the analysis of
cellular phone menu hierarchies [1]. They proposed a model-
based evaluation of cellular phone menu interaction, gathered
data and evaluated three models: Fitts’ law model, GOMS,
and ACT-R. They concluded that the prediction by GOMS
was the best among the three models. They also tried to
improve menu selection time by using a simple best-first
search algorithm and got over 30% savings in selection time.

This paper proposes an algorithm based on the genetic
algorithm (GA) for optimizing the performance of menus.
The algorithm aims to minimize the average selection time
of menu items by considering the user’s pointer movement
and search/decision time.

We will show preliminary results on a static hierarchical
menu of a cellular phone as an example for a device with a
small screen and limited input capability.

II. FORMULATION OF THE PROBLEM

A. Overview

The optimization problem of hierarchical menus can be
considered as one dealing with placing menu items on the
nodes of a tree. Let us assume a tree where the maximum
depth is D, the maximum number of children that a node
has is W , the root is the initial state, and menu items are on
nodes. An example of a hierarchical menu is shown in Fig. 2.

2856

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

level 0

level 1

levelm

V0
0

V0
1 V1

1 V1 V1

V0
m V1 V V

W -1

W -1

W -2

W -2
m m m

....

....

Search/
Decison
time

Up to
children

Pointing
time

W

t sd
0

t p
0

t p
1

t p
W-1

....

Fig. 2. Tree Structure of a Hierarchical Menu

As shown in the figure, some menu items have children; i.e.
some menu items have submenus. The time to select the
target item is the time to traverse from the root to the target
node. The problem is to minimize the average traversal time
with respect to the given search frequencies of menu items.

We cannot arbitrarily arrange the menu purely for effi-
ciency. We must respect the semantic relationships between
the items. That is, “Ringer Volume” is under the “Settings”
category rather than vice versa for good reason. To cope
with the difficulties of representing and reasoning about
menu item semantics, we introduce two metrics, functional
similarity and menu granularity.

Functional similarity is a metric that represents the sim-
ilarity of two menu items in terms of their functions. We
assume that the functional similarity takes a value between
0 and 1; 0 means that the two items have no similarity, and
1 means that the two items have very high similarity. For
example, it is very natural to assume that “Create New Mail”
and “Favorite Web Site” have low similarity and that “Create
New Mail” and “Inbox of Mail” have high similarity. We use
this metric to avoid placing items with low similarity on the
same submenu of a node. If items with low similarity are
put on the same submenu, it becomes difficult for a user
to remember the menu layout. The formal definition will be
given later.

Menu granularity is a metric that reflects the number of
submenus a node has as its descendants. We introduce this
metric to avoid placing an item that has many children and
an item that has no child as children of the same node. The
formal definition will be given later.

The problem of minimizing the average traversal time is
a very difficult one because of the following constraints;

• The traversal time from a node to its children is not
constant; it varies depending on the starting and ending
nodes.

• Menu items usually belong to groups, and they have
hierarchical constraints.

• We should consider the functional similarity and the
menu granularity of each item from the standpoint of
usability.

B. Formulation

1) Notation: Let l be the level number, i is the ordering
number in siblings, and vl

i be a node of a tree (Fig. 2).
Moreover, let M = (V, E) be a tree where V = {vl

i} denotes
the nodes and E = {eij} denotes the edges. We call the leaf
nodes that correspond to generic functions “terminal nodes.”

There are two kinds of menu item or node in M . One type
is terminal nodes that correspond to generic functions, and
the other is intermediate nodes. The terminal nodes cannot
have children.

Let Ii represent a menu item and the total number of
items be N ; i.e., there are Ii(i = 1, · · · , N) menu items.
Items that correspond to generic functions are less than N
and some items/nodes are intermediate items/nodes that have
submenu(s) as a child or children. We assume that a menu
item Ii is assigned to a node vl

i; therefore, we use Ii and vl
i

interchangeably.
We also assume that the selection probability of the

terminal node/generic function is represented by Pri.
2) Selection Time: The selection time tli of a menu

item/node vl
i on the hierarchical level l can be expressed

using the search/decision time tsd
i and the pointing time tpi

as follows [4]:

tli = tsd
i + tpi . (1)

We also consider the time to reach level l; therefore, the
whole selection time Ti of a node vl

i on level l can be
expressed as follows:

Ti =

l−1∑

j=0

tjij
+ tli. (2)

Thus, the average selection time Tavg is defined as follows:

Tavg =

N∑

i=1

PriTi. (3)

3) Pointing Time: As Silfverberg et al. [13] and Cockburn
[4] reported, the pointing time tpi can be expressed by using
the Fitts’ law as follows:

tpi = a + b log2(Ai/Wi + 1), (4)

where the coefficients a and b are determined empirically
by regressing the observed pointing time, Ai is the distance
moved, and Wi is the width of the target.

Fitts’ law describes the time taken to acquire, or point to, a
visual target. It is based on the amount of information that a
person must transmit through his/her motor system to move
to an item – small, distant targets demand more information
than large close ones, and consequently they take longer to
acquire. Therefore the term log2(Ai/Wi + 1) is called the
index of difficulty (ID),

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2857

4) Search/Decision Time: We assume that the search/
decision time tsd

i can be expressed as follows [4].

• For an inexperienced user, the time required for a linear
search is as follows:

tsd
i = bsdnl + asd, (5)

where nl is the number of items that a level l node
has, and the coefficients asd and bsd are determined
empirically by regressing the observed search time.

• For an expert, we can assume that the time tsd
i obeys

Hick-Hyman’s law.

tsd
i = bsdHi + asd, (6)

Hi = log2(1/Prl
i), (7)

where the coefficients asd and bsd are determined em-
pirically by regressing the observed search time.
If we can assume that all items are equally probable

H = log2(n
l) iff ∀Prl

i = 1/nl. (8)

5) Functional Similarity: Toms et al. reported the result
of generating a menu hierarchy from functional descriptions
using cluster analysis [15]. However, this approach is time
consuming; therefore, we choose to use another one.

We represent the functional similarity of item Ix and Iy

by using a function s(Ix, Iy) which takes a value between 0
and 1. Let us assume that generic function of each item Ii

can be specified by some words wli = {w0, w1, · · · }, and
let WL =

⋃

i

wli be the whole words. Let us also assume

that an intermediate node can be characterized by the words
by which the children are specified. Let x be a vector in
which element xi represents the frequency of the i-th word
in its specification, and let y be a vector of node y. Then,
the functional similarity s(Ix, Iy) is defined as follows:

s(Ix, Iy) =
x · y

|x||y|
(9)

Let us consider a node vl
i that has m children. The penalty

of functional similarity P s
vl

i

of node vl
i is defined as follows:

P s
vl

i

=

m−1∑

i=0

m−1∑

j=0

(1 − s(Ii, Ij)). (10)

And the total penalty P s is defined as follows:

P s =
∑

vl
i
∈{V \v0

0
}

P s
vl

i
. (11)

where Sint represents the set of intermediate nodes.

6) Menu Granularity: The menu granularity gvl
i

of a node
vl

i is defined as the total number of descendants. If node vl
i

is a terminal node, then gvl
i
= 0. Moreover, if node vl

i has m

children (vl+1
j , j = 0, · · · , m− 1) whose menu granularities

are g
v

l+1

j
, (j = 0, · · · , m−1), then gvl

i
is defined as follows:

gvl
i
=

m−1∑

j=0

g
v

l+1

j
. (12)

The penalty of menu granularity P g

vl
i

of node vl
i is defined

as follows:

P g

vl
i

=

m−1∑

i=0

m−1∑

j=0

∣∣∣gvl
i
− gvl

j

∣∣∣. (13)

And the total penalty P g is defined as follows:

P g =
∑

vl
i
∈{V \v0

0
}

P g

vl
i

. (14)

where Sint represents the set of intermediate nodes.
7) Objective Function: The problem is to minimize the

following objective function:

f = Tavg + αP s + βP g, (15)

where α and β are the constants that control the preference
of functional similarity and menu granularity.

C. Local/Partial Optimization

1) Placing Items as Children of a Node: Let us consider
a node vl

i on level l that has n ≤ W children vl+1
j (j =

0, · · · , n − 1) and represent the traversal time from vl
i to

vl+1
j , i.e., the pointing time for vl+1

j , by tlj . When we want
to place Ij , (j = 0, · · · , n − 1) menu items whose selection
probabilities are represented by Prj as the children of the
vl

i, the average pointing time Tvl
i
,

Tvl
i
=

n−1∑

j=0

Prjt
l
j , (16)

is minimized as follows:

1) Sort Ii using Pri as the sort key in descending order,
and let the result be I ′i(i = 0, · · · , n − 1),

2) Sort vl+1
i using tli as the sort key in ascending order,

and let the results be v
′(l+1)
i (i = 0, · · · , n − 1)

3) Placing I ′i on the node v
′(l+1)
i gives the minimum

average pointing time from node vl
i.

2) Optimization Problem: When menu items that are
placed as the children of a node V are given, the placement
that minimizes the average pointing time is straightforward.
Therefore, the problem is to find the best assignment of menu
items to nodes of a tree that minimizes Equation (15), where
nodes have a fixed capacity of W items. There should be at
least L = �N/W � nodes in the tree, and N items placed on
some node. The first node has W items chosen from N items,
and the second node has W items chosen from N−W items,
and so on, so the search space of the problem is roughly

2858 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

NCW ×N−W CW ×· · ·×N−LWCW = N !/(W !)L; therefore,
the problem is a difficult combinatorial optimization prob-
lem. For instance, consider the case of N = 200, W = 10.
The search space is roughly 200!/((10!)20) ∼ 10243.

III. GENETIC ALGORITHM

A. Basic Strategy

Previous studies showed that breadth was preferable to
depth [9], [10], [14], [16], [17]. Schultz and Curran reported
that menu breadth was preferable to depth [14]. Larson and
Czerwinski reported the results of depth and breadth tradeoff
issues in the design of GUIs [10]. Their results showed that,
while increased depth did harm search performance on the
web, a medium condition of depth and breadth outperformed
the broadest shallow web structure overall.

Zaphiris studied the effect of depth and breadth in the
arrangement of web link hierarchies on user preference,
response time, and errors [16]. He showed that previous
menu depth/breath tradeoff procedures applied to the web
link domain. He also showed that task completion time
increased as the depth of the web site structure increased.

Zaphiris et al. also showed the results of the study inves-
tigating age-related differences as they relate to the depth
versus breadth tradeoff in hierarchical online information
systems [17]. They showed that shallow hierarchies were
preferred to deep hierarchies, and seniors were slower but
did not make more errors than their younger counterparts
when browsing web pages.

Because the previous studies showed that breadth was
preferable to depth, we use a kind of breadth-first search
algorithm (shown later), as the core of the proposed GA.

B. Chromosome and Mapping from Genotype to Phenotype

A simple way to represent a solution of the problem is a
tree. But there is a problem that genetic operators such as
crossover or mutation may generate an infeasible solution;
i.e., the tree does not contain all the generic functions. There
are two ways to cope with this problem. The first way is to
convert an infeasible solution into a feasible one and modify
the chromosome. The other way is to use a chromosome
representation that does not generate infeasible solutions. We
base the proposed algorithm on the latter approach.

Since breadth is preferable to depth, an algorithm that
places menu items Ii one by one on a usable node that has the
smallest node number can find a good solution. We number
each node from root to bottom, and from left to right. We
use an algorithm that assigns Ii to a node as follows:

1) A chromosome of the GA is a sequence of Ii; i.e., a
chromosome can be represented as a permutation of
numbers.

2) According to the permutation, assign menu items Ii

one by one to vacant positions of the node that has the
smallest node number.

3) If a generic function is assigned to a node, then the
number of children that the node can have is decreased
by 1.

(10, 5, 11, 7, 1, 3, 2, 6, 4, 9, 8, 12)

10, 5, 11, 1

Permutation 1

(1, 10, 3, 5, 11, 7, 2, 6, 4, 9, 8, 12)

1,10, 3, 5

Permutation 2

11, 7, 2, 6 4, 9, 8, 12

If we assign 7 to the root
node, then the root node
cannot have children, so
7 should be assign to a
next level node.

7, 3, 2, 6

4, 9, 8, 12

Fig. 3. Mapping a Permutation to a Tree Structure.

root

func1

func2

int1

int2

func3

func4

func5

func6

root

func1

func2

func3

int1

func4

func5

func6

left: before local search right: after local search

Fig. 4. Local Search.

If we have a sufficient number of intermediate nodes, we
can search enough space to find the optimal solution.

Two examples of assignment according to permutation are
depicted in Fig. 3, where W is 4. In the figure, numbers
in italic represent the intermediate node. Let us consider
“Permutation 1”. In this case, we can assign “10”, “5”, and
“11” to the root node. But we cannot assign “7” to the root
node, because the root node cannot have any children if we
did. Therefore, we should assign “7” to the next level node,
and the remaining position of the root node should be an
intermediate node. Because there is an intermediate node in
the root node, we can assign “1” to the root node.

In the case of “Permutation 2”, the mapping is straightfor-
ward. The first number “1” is an intermediate node, so we
assign it to the root node, and the number of vacant positions
in the tree is incremented by 4. The next number “10” can be
assigned to the root node, and “3” and “5” can be assigned
to the root node. The remaining numbers are assigned to the
children of the root nodes.

C. Local Search

We use a local search method to improve the performance
of GA. The method finds an unused node vl

i, i.e., finds an
intermediate node that has no child, and swaps vl

i with a node
that is the sibling’s child vl+1

j . Figure 4 shows an example of
this procedure. In the left tree, the intermediate node “int2”
has no child, so it is swapped with “func3”, and the result
is the right part.

D. Crossover and Mutation

We use a crossover operator that does not generate an
invalid chromosome. As described above, a chromosome
is a permutation of numbers; therefore, we use crossover
operators that are developed for the representation. Based on

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2859

Fig. 5. Key Layout of the Target Cellular Phone.

the results of preliminary experiments, we chose CX (Cycle
Crossover) for the crossover operator .

We use the swap mutation as the mutation operator.
Randomly chosen genes at position p and q are swapped.

The crossover and mutation operators do not generate
invalid chromosomes; i.e., offspring are always valid per-
mutations.

E. Other GA Parameters

The selection of the GA is tournament selection of size 2.
The initial population is generated by random initialization,
i.e., a chromosome is a random permutation of numbers. We
use a steady state GA, for which the population size is 100,
and the mutation rate is one swap per chromosome.

IV. NUMERICAL EXPERIMENTS

We conducted numerical experiments to confirm the effec-
tiveness of the proposed algorithm. The target was a cellular
phone that is used by one of the authors. The phone [8] has
24 keys as shown in Fig. 5.

The target phone has hardware keys for “E-mail”,
“EZweb”, “Phone book”, and “Application”. And there is
a “Shortcut”key (cursor down). The root menu thus has the
four submenus corresponding to the the hardware keys.

A. Experimental Data

1) Pointing Time and Decision Time: The index of diffi-
culty for 24 × 24 key pairs was calculated as follows. We
measured the relative coordinates of the center (x, y) of each
key and measured the width and height of each key. We
calculated the index of difficulty to an accuracy of one digit
after the decimal point. This gave us 28 groups of indexes of
difficulty as shown in Table I. We named each key, from top
to bottom and left to right, as follows: “App”, “Up”, “Phone
book”, “Left”, “Center”, “Right”, “Mail”, “Down”, “Web”,
“Call”, “Clear”, “Power”, “1”, thru “9”, “*”, “0”, and “#”.

We measured the pointing time of one-handed thumb users
for the above 28 groups by recording the tone produced
by each key press [1]. There are two ways to measure
the pointing time. Silfverberg et al. measured the time by
counting the number of characters generated by key presses

TABLE I

INDEX OF DIFFICULTY FOR THE TARGET PHONE (24 KEYS)

group ID example pairs # of
from to pairs
1 3.7 * Up 2
2 3.6 0 Up 3
3 3.5 9 Up 6
4 3.4 8 Up 8
5 3.3 8 Right 17
6 3.2 9 Down 22
7 3.1 8 Down 25
8 3.0 6 Right 28
9 2.9 1 Up 29

10 2.8 8 Center 29
11 2.7 1 * 33
12 2.6 2 Right 29
13 2.5 1 9 29
14 2.4 1 0 53
15 2.3 1 3 33
16 2.2 2 Center 20
17 2.1 1 8 25
18 2.0 2 Call 17
19 1.9 1 7 21
20 1.8 Mail Call 7
21 1.7 1 5 50
22 1.6 1 2 16
23 1.4 2 Clear 9
24 1.3 Right Up 12
25 1.2 1 4 21
26 1.1 Center Down 4
27 0.8 Right Center 4
28 0.0 1 1 24

in 10 seconds [13]. Amant et al. measured the time by
recording the tone produced by each key press [1]. Because
the target has keys that do not generate any character, such
as cursor keys, we measured the time by recording the tone.

Unpaid volunteers participated in the experiment. We
prepared 28 tasks corresponding to the 28 groups. The “Read
Email Message” function of the phone was used during
the tasks, except for the one task (ID=1.4, “2” to “Clear”).
For the exceptional case, the “write memo” function (with
number mode selected) was used. The participants repeated
the task of pressing the “From” key and the “To” key 10
times for each task. The pointing time was calculated by
subtracting the starting time of the tone of “From” from the
starting time of tone of “To.”

We got the following equation for predicting the pointing
time, and the equation is very similar to the one reported by
Silfvergerg et al. [13]1

tpi = 192 + 63 log2(Ai/Wi + 1) (ms). (17)

Although the target phone has the ability to select a menu
item by pressing a key that is prefixed to item title, we
assumed that all selections were done by cursor movements.

The target of this experiment was an expert; therefore, we
used the following equation for the search/decision time [4]2:

tsd
i = 80 log2(n

l) + 240 (ms). (18)

1tp
i

= 176 + 64 log
2
(Ai/Wi + 1) (ms).

2The equation is derived from experiments conducted for a computer
display, and is not for a cellular phone.

2860 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

TABLE II

IMPROVEMENT IN AVERAGE SELECTION TIME.

Case Tave(ms) (%) P s P g

Original 3331 0.0 454 793
Local Move 2812 15.5 454 793
Case 1 (W =16) 2036 38.9 727 1259
Case 2 (W =12) 1998 40.0 541 856
Case 2 (W =9) 1959 41.2 402 291
Case 2 (W =6) 2237 32.8 279 173

TABLE III

EFFECT OF WEIGHTS.

α β Tave(ms) (%) P s P g

0.0 0.0 1837 44.9 584 448
5.0 1.0 1935 41.9 405 278

10.0 1.0 1959 41.2 402 291
20.0 1.0 1990 40.3 396 300
40.0 1.0 2066 38.0 395 309
20.0 5.0 2011 39.6 397 274
20.0 10.0 2028 39.1 405 260

2) Usage Frequency Data: We gathered usage frequency
data as follows. The first author recorded the daily usage of
each function for two months, and we generated the usage
frequency data from the record. There were 129 terminal
nodes in the data.

3) Similarity: We assigned three to five words to each
generic function according to the users’ manual of the target
phone [8].

B. Results

We conducted the following experiments.

case 1 Typical Usage: This experiment was conducted to
assess the typical improvement by the GA. The
maximum width W was 16.

case 2 Limited Breadth: Although breadth is preferable
to depth, pressing a far key or pressing a “Down”
key many times is sometimes tedious. This exper-
iment was conducted to see the effects of limiting
the breadth. In this case, we set W to 12, 9, and 6.

Because GA is a stochastic algorithm, we conducted 50
runs for every test case, and the results shown in Table II and
Table III are averages over 50 runs. The two parameters for
weights were set to α = 10.0 and β = 1.0. The maximum
number of fitness evaluations was 100,000.

In Table II, “Local Move” shows the results of a lo-
cal modification that places menu items according to their
frequency, i.e., the most frequently used item is placed as
the top item, and so on. As the table shows, the proposed
algorithm can generate menu with shorter average selection
time. Moreover, limiting the breadth give better menus. This
is partly because the search/decision time is proportional to
log2(n), where n is the number of items. As the number of
items increases, the search/decision time increases; therefore,
the average selection time increases. Limiting the breadth to
6 gave a longer selection time and smaller penalties.

The original menu (Tave=3331 (ms)) and the best menu
of Case 2 (9 keys) (Tave=1913 (ms)) are shown in Fig. 7 and

Fig. 8. In the two figures, items and intermediate nodes are
shown in boxes and the vertical ordering shows the placement
in a single level menu. The box is omitted for low usage
frequency items/intermediate nodes for the sake of saving
space.

In Fig. 8, items with high usage frequency are placed on
a smaller level and on an upper position. For example, the
most frequently used “Inbox folder 2” which is placed under
the “Inbox” menu in the original menu, is placed as a child
of “E-Mail” in the optimized menu. Note also that “Shortcut”
is not used in the original menu, but it is fully utilized in
the optimized menu; frequently used URLs are placed in
“Shortcut”.

C. Effects of weights

We introduced two weights for the penalties of functional
similarity and of menu granularity. Table III shows the results
of different weights settings for the case W = 9. The average
selection time increased as we increased α. The table also
shows that the difference in average selection time was larger
than that of the penalty factor of P s. Setting them to zero
gave a shorter selection time, but the penalties were larger.

There is a tradeoff among the average selection time, func-
tional similarity, and menu granularity; therefore, a multi-
objective approach might be a more natural formulation.

D. Convergence Speed

Figure 6 shows fitness, average selection time, and two
penalty terms in the best case (W = 9). GA found a fairly
good solution within 50,000 fitness evaluations. The penalty
term of “Functional Similarity” decreased almost monoton-
ically, but the term of “Menu Granularity” oscillated in the
early stage. The average selection time initially decreased
rapidly, but sometimes increased in the middle of iteration
because of the penalty terms.

V. DISCUSSION AND FUTURE WORK

The experiments show that the proposed algorithm can
generate better menu hierarchies for the target phone. Be-
cause our targets of are not limited to cellular phones, and
the preliminary results are promising, we will apply the
algorithm to wider varieties of targets such as Web browser
bookmarks.

In this paper, we focused on a static menu as the target;
adaptive/dynamic menu (e.g., [2], [3], [7]) that changes menu
contents depending on usage will be a future target.

The data used in the experiments, especially selection
frequency data, were limited. Therefore, we should gather
a wider variety of usage data and use that to confirm the
effectiveness of the proposed method.

VI. CONCLUSION

We proposed a GA-based algorithm for minimizing the
average selection time of menu items that considers the
user’s pointer movement time and the decision time. The
preliminary results showed that the algorithm can generate a
better menu structure. The target of the proposed algorithm
is not limited to cellular phones.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2861

 31500

 32000

 32500

 33000

 33500

 34000

 0 25000 50000 75000 100000

Fi
tn

es
s

Generation

 1900

 1950

 2000

 2050

 2100

 2150

 2200

 2250

 2300

 2350

 2400

 0 25000 50000 75000 100000

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

Generation

 300

 350

 400

 450

 500

 550

 600

 0 25000 50000 75000 100000

A
ve

ra
ge

 S
el

ec
tio

n
T

im
e

Generation

Functional Similarity
Menu Granularity

Fig. 6. Fitness, Average selection time, Penalty terms.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Fujio Tsutsumi of
CRIEPI for his valuable comments.

REFERENCES

[1] St. Amant, T.E. Horton, and F.E. Ritter, “Model-based evaluation of
cell phone menu interaction,” Proc. CHI 2004, pp.343–350, 2004.

[2] D. Ahlström,“Modeling and improving selection in cascading pull-
down menus using Fitts’ law, the steering law and force fields,” Proc.
CHI 2005, pp.61–70, 2005.

[3] J. Beck, S.H. Han, and J. Park, “Presenting a submenu window
for menu search on a cellular phone,” Int. J. of Human-Computer
Interaction, vol.20, no.3, pp.233–245, 2006.

[4] A. Cockburn, G. Gutwin, and S. Greenberg, “A predictive model of
menu performance,” Proc. CHI 2007, pp.627–636, 2007.

[5] G. Francis, “Designing multifunction displays: an optimization ap-
proach,” Int. J. of Cognitive Ergonomics, vol.4, no.2, pp.107–124,
2000.

[6] G. Francis and C. Rash, “MFDTool(version 1.3): a software tool
for optimizing hierarchical information on multifunction displays,”
USAARL Report No.2002-22, August 2002.

[7] L. Findlater and J. McGrenere, “A comparison of static, adaptive, and
adaptable menus,” Proc. CHI 2004, pp.89–96, April 2004.

[8] KDDI: “Manual for CASIO W43CA,”
http://www.au.kddi.com/torisetsu/pdf/w43ca/w43ca torisetsu.pdf,
http://www.au.kddi.com/torisetsu/pdf/w43ca/w43ca kantan.pdf, 2006.

[9] J. I. Kiger, “The depth/breadth trade-off in the design of menu-
driven user interfaces,” Int. J. Man-Mach. Stud., vol.20, no.2, pp.201–
213,1984.

[10] K. Larson and M. Czerwinski, “Web page design: implication of
memory, structure and scent for information retrieval,” Proc. CHI
1998, pp.25–32, 1998.

[11] B. Liu, G. Francis, and G. Salvendy, “ Applying models of visual
search to menu design,” Int. J. Human-Computer Studies, no.56,
pp.307–330, 2002.

[12] J.C. Quiroz, S.J. Louis, and S. M. Dascalu, “Interactive evolution of
XUL user interfaces,” Proc. of GECCO 2007, pp.2151–2158, 2007.

[13] M. Silfverberg, I.S. MacKenzie, and T. Kauppinen, “Predicting text
entry speed on mobile phones,” Proc. CHI 2000, pp.9–16, 2000.

[14] E.E. Schultz Jr. and P.S. Curran, “Menu structure and ordering of menu
selection: independent or interactive effects?,” SIGCHI Bull.,vol.18,
no.2, pp.69–71,1986.

[15] M.L. Toms, M.A. Cummings-Hill, D.G. Curry, and S.M. Cone, “Using
cluster analysis for deriving menu structures for automotive mobile
multimedia applications,” SAE Technical Paper Series 2001-01-0359,
SAE, 2001.

[16] P. Zaphiris, “Depth vs breadth in the arrangement of web links,” Proc.
44th Annual Meeting of the Human Factors and Ergonomics Society,
pp.139–144, 2000.

[17] P. Zaphiris, S.H. Kurniawan, and R.D. Ellis, “Age related difference
and the depth vs. breadth tradeoffs in hierarchical online information
systems,” Proc. User Interfaces for All, LNCS 2615, pp. 23–42, 2003.

[18] M. Ziefle and S. Bay, “Mental models of a cellular phone menu.
Comparing older and younger novice users,” Proc. MobileHCI 2004,
LNCS 3160, pp.25–37, 2004.

2862 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

root

E-Mail

EZweb

Application

Shortcut

Inbox

Check,Mail,New

Folder1

Folder2

Folder3

Folder4

Folder5

Folder0

Favorite Site

Folder1

Folder2

Folder3

URL1-2

URL1-3

URL1-4

URL1-5

URL1-6

URL1-7

URL1-8

URL1-9

URL1-10

URL1-11

URL1-12

URL1-13

Fig. 7. Original Hierarchical Menu.

root

E-Mail

Shortcut

EZWeb

Application

Folder2

Folder5

Folder3

INT1

INT2

Folder0

Folder4

Folder1

Check,New,Mail

URL1-6

URL1-3

URL1-4

URL1-11

URL1-2

URL1-9

URL1-7

URL1-12

FOLDER1

FOLDER2

FOLDER3

URL1-5

URL1-13

URL1-8

URL1-10

Fig. 8. Example of an Optimized Menu (W = 9).

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2863

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

