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Abstract—We are proposing an approach to enable a robot to
learn the speech, gesture and touch patterns, that its user
employs for giving positive and negative reward. The learning
procedure uses a combination of Hidden Markov Models and a
mathematical model of classical conditioning. To facilitate
learning, the robot and the user go through a training task
where the goal is known, so that the robot can anticipate its
user’s commands and rewards. We outline the experimental
framework and the training task and give details on the
proposed learning method evaluating the applicability of
classical conditioning for the task of learning user rewards given
in one or more modalities, such as speech, gesture or physical
interaction.

1. INTRODUCTION

HIS work describes a method to adapt a robot to its

user through a cooperative training task. During the

training phase, the robot learns to understand its user’s way of

giving positive and negative feedback to it using speech,

gestures and the robot's built-in touch-sensors. The paper
outlines the two essential elements of our learning method:

- A two-staged learning procedure based on Hidden
Markov models and an implementation of classical
conditioning. It is employed to learn to recognize the
user's multimodal behavior patterns and to associate
them with positive and negative rewards.

- A method to gather the necessary training data from
the user in a training task without stressing or boring
him and without putting the user into a situation,
where he has to pre-record behaviors that he wants to
use for communication in an artificial “recording”
situation.

The proposed way of learning reward patterns and
multimodal instructions through a training task has certain
advantages over the current practice of using hard-wired
commands for controlling a robot and giving feedback to it. It
allows the user to give multimodal reward and commands
naturally in his or her preferred way without restrictions
concerning words, grammar or even the language used.
Moreover, it transfers the necessary effort of learning and
remembering the correct way of interacting from the user to
the robot while at the same time avoiding the pitfalls of fully
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natural language processing. In contrast to other studies, the
proposed approach does not aim at enabling robots to
understand everyday conversation but at making a robot learn
to deal with strictly task-related communication, like
commands and rewards. The proposed method for user
adaptation resembles the way, humans teach commands to pet
dogs. It is designed to be integrated into a personal
service-robot or pet-robot to enable it to adapt to the way its
user wants to access its service or entertainment functions by
natural multimodal commands or reward.

In our learning method, the robot and the user have to
complete a cooperative training task, to adapt to each other.
The training phase has to be completed before actually
putting the robot into service. While the main goal of the
training task is to enable the robot to learn the way, its user
interacts with it, it also provides an environment for the user
to learn how the robot expresses itself in a simple,
easy-to-understand scenario where misunderstandings do not
have any negative consequences.

In this paper, we are focusing on learning patterns that the
user applies for giving positive and negative reward to the
robot’s behavior as a first step towards learning more
complicated multimodal interaction patterns. Further
explanations for this decision are given in section II1.B.

In first experiments, we evaluated the second, conditioning
based stage of our learning method and investigated on the
effects of restrictions in allowed reward behavior.

II. RELATED WORK

Techniques to acquire new words[3][6] or gestures[7]
through human-robot interaction have been researched upon
in recent years as a part of the research on symbol grounding
for natural language acquisition.

Lee et al. described an approach [7] for the online-learning
of human gestures in Human-Robot-Interaction. Their system
is based on the online-training of Hidden Markov Models
using gesture information recorded by a data glove. The
system was able to recognize 14 gestures from the sign
language alphabet with an error rate of 0.1 after observing 4
training instances of each gesture.

Iwahashi described an approach [6] to the active and
unsupervised acquisition of new words for the multimodal
interface of a robot. He applies Hidden Markov Models to
learn verbal representations of objects, perceived by a stereo
camera. The learning component uses pre-trained HMMs as a
basis for learning and interacts with its user in order to avoid
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and resolve misunderstandings.

Kayikei et al. [9] use Hidden Markov Models and a neural
associative memory for learning to understand short speech
commands in a three-staged recognition procedure. First, the
system recognizes a speech signal as a sequence of diphones
or triphones. In the next step, the sequences are translated into
words using a neural associative memory. The last step
employs a neural associative memory to finally obtain a
semantic representation of the utterance.

In the same way as the approaches, outlined above, our
learning algorithm attempts at assigning a meaning to an
observed auditory or visual pattern. However, the system is
not trying to learn the meaning of individual words or
symbols, but focuses on learning characteristic behavior
patterns expressing commands or rewards as a whole. Those
expressions can be words or gestures as in the studies above,
but also prosodic patterns or utterances consisting of multiple
words. Moreover, our proposed approach is not limited to a
single modality such as only words or gestures, but tries to
integrate observations from different modalities.

In this work, Hidden Markov Models are employed for the
low-level modeling of speech-, prosody- gesture- and touch
patterns. As a standard approach for the classification of time
series data, Hidden Markov Models are widely used in
literature. The use of Mel-Frequency-Cepstrum-Coefficients
(MFCC) for HMM-based speech recognition is described in
[17] Appropriate feature-sets for emotion/affective intent and
gesture recognition are outlined in [4][10][11] and [7]
respectively. Those tried and tested feature-sets are used in
our work as an input for the HMM-based low-level learning
phase.

For the high-level learning of associations between the
meaning of commands and rewards and their appropriate
Hidden Markov Model representations, classical conditioning
is used. Mathematical theories of classical conditioning were
extensively researched upon in the field of cognitive
psychology. An overview can be found in [2].

The relation of classical conditioning to the phase of
learning word meanings in human speech acquisition has
been postulated in the book “Verbal Behaviour” by B. F.
Skinner [12] and has been adopted and modified by
researchers in the field of Behavior Analysis. In [13] Staats et
al. describe an early approach to explain human learning of
word meanings by classical conditioning. An explanation of
more complex phenomena in learning word meanings by
conditioning is described by B. Lowenkron in [8]. Our
method is based on the psychological background, explained
in these works. Our requirements for choosing an appropriate
conditioning model to learn multimodal commands are
outlined in section IV.C of this paper.

Recently, there have been several studies concerning the
way that humans like to teach robots or other artificial
creatures, such as virtual characters. However, as far as
speech or gesture is used in these studies, it is typically
restricted to fixed sentence patterns and a limited vocabulary
of pre-trained gestures or words.
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Yamada et al. described an approach to mutual adaptation
between a human and an AIBO type robot based on classical
conditioning using the Klopf neuron model [16]. While the
robot learned to interpret the human's commands given by
pressing one of the buttons on the robot's back, the human
found out in the course of the experiments, how to correctly
give commands to the robot.

The use of positive and negative reward from a human
instructor to teach a robot was investigated upon in several
studies. Lockerd et al. described an experimental setting for
assessing human reward behavior and its contingency [14].
The participants of the study could give positive as well as
negative reward to teach the virtual character Sophie to bake a
cake in the "Sophie's World" scenario. Reward could be given
by an interactive reward interface that allowed the user to
assign any reward on a scale from -1 to +1 either to a certain
object or to the world state. The character learned from a
human teacher by this kind of reinforcement. In their
experiments they found a strong bias towards positive reward
and discovered a phenomenon that they described as
anticipatory rewards, positive rewards that were assigned to
an object that the character has to use in a later step. This kind
of reward can be interpreted as guidance for the character.

III. THE TRAINING PHASE

The training phase that is used to adapt the robot to its user
and vice-versa has to fulfill certain requirements. As the robot
does not have any prior knowledge about its user and his way
of interacting at the beginning of the training phase, the
training task needs to be specifically designed to allow the
robot to anticipate what instruction and reward the user is
going to give at any given time during task execution.

A. Requirements

Learning the meaning of user behavior by our leaning
method is only possible within a task that has the following
properties:

- The robot as well as the user know the target state in

advance

- The order of steps leading from the current state to the

target state is determined unambiguously by giving a
target state.

In a scenario like that, the robot can anticipate the user's

Figure 1: Sample training task
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reward based on its knowledge about the target state and the
current state of the task execution. It can provoke positive and
negative reward by correct/incorrect behavior, that is,
behavior that does or does not lead to target state, and it can
prompt the user for the next instruction, if no interaction is
observed.

The requirement that the order of steps for task execution
must be fixed may appear quite strong. However, in a
scenario, where the robot does not have any prior knowledge
about the user and his way of giving commands, this is
necessary, because otherwise, fine-grained instruction from
the user might lead to a situation, where an action of the robot
does not correspond to the user’s instructions although it
leads to the desired final state. For example, in a task with the
target state "The red and the blue lamp are switched on", the
user may give the detailed instruction "First, switch on the red
lamp". Now, switching on the blue lamp first, becomes
incorrect although it leads to the correct final state. Without
understanding the user’s instructions, there is no way for the
robot to correctly deal with this kind of situation. Therefore
the robot has to be able to infer the order of steps from
knowing the target state.

A simple example for a training task, that possesses the
desired properties and that was used our first experiment, is
moving a colored object to a color-marked place. The
experimental setting can be seen in Figure 1. When the object
and the target place are known to the user as well as the robot,
the steps leading to the goal are fixed and their order cannot
be interchanged. While the user instructs the robot feely by
means of his naturally used speech and gesture patterns, the
robot anticipates the user's commands from its knowledge of
the target state and the current state of the task execution and
shows either compliant behavior and expects and learns
positive reward or shows non-compliant behavior, expecting
negative reward.

B. Target of Learning

The goal of our research is, to develop a method to learn
commands as well as positive and negative rewards that can
be used for controlling the service and entertainment
functions of service-robots and pet-robots through the
interaction with a user. We chose the learning of positive and
negative rewards as the starting point of our work, because
they are the smallest useful set of commands, that can be used
to teach a robot, for example by reinforcement learning.

There are two main points, that make learning rewards
easier than learning typical other commands:

Rewards are typically not parameterized. While commands
can take several parameters, such as in “go <forward> <5
m>" or “put <the coffee-cup> <on the desk>" which need to
be processed for understanding the command correctly,
rewards can be understood as positive or negative without the
need for processing parameterization. Therefore, a reward
can be modeled as a single Hidden Markov Model while the
processing of arbitrary commands, which is the next step in
our work, needs to provide a means for combining HMMs
modeling commands and their parameters and segmenting
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commands and parameters during the training phase.

Apart from that, rewards can only have two meanings:
praise or punishment and while varying strongly between
different people, the number of different positive and
negative reward patterns used by an individual is limited.
This leads to a reduction of the necessary amount of training
data compared to the learning of more complex and numerous
instruction patterns.

C. Assumptions

This research relies on the assumption that patterns of

interaction between humans and robots range from rather
universal ones, like pointing gestures, which are roughly the
same between different individuals to highly individual
patterns, like giving positive/negative reward. Patterns that
are universal can be pre-trained and adapted to a certain user
during task execution. Only patterns that vary substantially
between users need to be trained in a training phase that
precedes the actual use of the robot.
We further assume that each user has a limited inventory of
interaction patterns to express a certain command or reward.
The interaction patterns, that are typically used, can change
slowly over time. Moreover, interaction patterns used by one
user for the same instruction do not vary excessively between
different tasks. The term “multimodal reward pattern” is used
in this paper to refer to a time sequence of observations that
possesses the following properties.

- It consists of perceptions in one or more modalities

- It begins by an increase in activity in one of the

modalities (e.g. voice onset)

- Itends by a period of inactivity in all modalities

- Actions in different modalities occur in close timely

relation, that is, at the same time or in a sequence,
quickly following one another.

- The perceptions follow a behavior of the robot that can

be clearly attributed a positive or negative value

IV. LEARNING METHOD

A. Overview

The learning algorithm is divided into two stages which are
executed after each of the user’s actions during the training
phase. In the "reward recognition learning" stage, Hidden
Markov Models are trained to recognize gestures,
touch-sequences, utterances and prosodic patterns. In the
"reward association learning" stage, the trained Hidden
Markov models are associated with either positive or negative
rewards, using a mathematical model of classical
conditioning.

Extending a HMM-based recognizer by a second,
conditioning-based learning stage has certain advantages and
addresses problems that cannot be solved by HMMs alone.
While it can benefit from the high performance of HMMs
which are widely considered state-of-the-art for the
classification of time series data, our model has to deal with
the problem, that there is no one-to-one relationship between
meanings — in this case, rewards — and their expression in

4099



speech, prosody, touch or gesture. Even a single user employs
multiple ways of expressing positive and negative rewards
and there are expressions that can have a positive or negative
meaning depending on the context, such as for instance,
calling the robot’s name. As an HMM can only represent a
direct relationship of a sequence of observations, to its
underlying most probable corresponding utterance or gesture,
it is necessary to have a second stage of learning, where the
connections between the different utterances, gestures and
prosodic patterns, represented by Hidden Markov Models,
and their meaning, in this case positive or negative feedback,
are learned. We chose conditioning as a biologically inspired
approach, as it has a number of desirable properties, which
are outlined in section IV.C of this paper. Moreover, it is
assumed, that a similar form of learning takes place, when
dogs learn to understand commands from their caregiver.

An overview of the implemented system is given in Figure 2.
The software is separated into the robot control software itself
and a trainer program, which is tailored towards a specific
training task. It possesses all information, needed to solve the
task and evaluates the current situation that the robot is in.
Based on its knowledge about the training task and its desired
outcome, it sends commands and provides reward signals to
the robot.

In analogy to conditioning in real animals, the reward from
the trainer application can be interpreted as some
immediately painful or pleasant signal which serves as an
unconditioned stimulus (US). The robot software is able to
learn the association between the user's behavior, represented
by a trained HMM, which becomes the conditioned stimulus
(CS) and the reward from the trainer program (US). In Figure
2, positive/negative rewards are denoted by +/-. The
conditioned associations between the rewards and the HMMs
for reward recognition are shown as dashed lines connecting
rewards and HMMs in the right part of the image. An
overview of the learning algorithm that is used to train the
HMMs and associations is shown in Fig. 3. It is described in
detail in sections IV.B and IV.C.

B. Reward Recognition Learning

A set of pre-trained HMMs for each of the four modalities
speech, speech prosody, touch and gesture is created from
pre-recorded sensor, audio and video data in order to
minimize the need for training samples from each individual
user. The initial HMM-set for speech recognition contains
monophone models. The models are based on standard
MEFCC feature-vectors, extracted from the recorded speech
data.

The HMM-set for prosody recognition is based on features
extracted from the pitch and energy contours as well as the
frequency distribution present in each frame of the speech
signal that are typically used for recognizing emotion or
affective intent in speech [4][11]. First trials are done with
standard left-right HMMs but there is some evidence in
literature [10] on emotion recognition from speech,
suggesting that ergodic HMMs may be better suited for
recognizing prosody.
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Figure 2: Overview of the system

The HMM-set for gesture recognition bases on features
describing the relative positions of the hands and the face of a
person. The positions are extracted from the stereo image of
two cameras and tracked over multiple frames in order to
determine the trajectories of the user’s face and hands.

The HMM-set, that is used to learn touching patterns, such
as stroking, patting or hitting the robot, uses feature vectors
containing the values returned by AIBO’s tactile head and
back touch sensors, and by the paw touch sensors.

For each of the above described modalities, Hidden
Markov Models are pre-trained, using an implementation of
the Baum-Welch-algorithm. The pre-trained HMMs are
stored separately for each modality in an HMM database.

During the training phase with human instruction,
observed reward behavior in each of the modalities, is first
processed by the Viterbi algorithm, in order to match it
against the pre-trained HMM-Models in the HMM-database.
In this stage, the matching is done on isolated "word" level:
The full utterance, gesture or touch-sequence is assumed to
correspond to one HMM in the database and matched against
every single HMM in the HMM database. The output of the
Viterbi algorithm is the best-fitting HMM along with a
confidence value.

If the confidence value is above a threshold, the HMM is
trained with the observed utterance/prosody/gesture and the
application proceeds to the reward association learning phase.
If the confidence value output by the Viterbi algorithm is
below the threshold, the recognizer is executed again. This
time, it is used as a continuous recognition based on an
EBNF-like grammar describing the possible
HMM-sequences for recognition. The sequence of HMMs
resulting from this execution of the Viterbi recognition is
merged into a new HMM. The new HMM is trained with the
utterance/prosody/gesture and inserted into the HMM
database for reuse.

The confidence threshold used for deciding whether a
HMM fits the currently observed utterance depends on the
number of instances already used to train the model and takes
into account the associative strength present between the
currently expected reward and the candidate HMM. Before
comparing the confidence value to the threshold, the value is
time-normalized to compensate for different utterance lengths.
The HMM that results from this low-level classification and
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learning stage, that is, the HMM providing the most accurate
available model of the observed utterance/prosody/gesture
serves as an input for the reward association learning.

C. Reward Association Learning

The reward association learning phase is based on the
theory of classical conditioning, which was first described
by L. Pavlov and originates from behavioral research in
animals. In classical conditioning, an association between a
new, motivationally neutral stimulus, the so-called
conditioned stimulus (CS), and a motivationally meaningful
stimulus, the so-called unconditioned stimulus (US), is
learned. The wunconditioned stimulus produces an
unconditioned reaction (UR) as a natural behavior. After
completing training, which is done by repeatedly presenting
the conditioned stimulus just before the occurrence of the
unconditioned stimulus, the conditioned stimulus is able to
evoke the same reaction, when it is presented alone. This
reaction is called the conditioned reaction. Pavlov found this
relationship while he was doing experiments investigating
the gastric function of dogs and measuring the amount of
their salivation in response to food. At first the dog did not
show any reaction to the tone of a bell (CS) but when the
dog was given food (US), it salivated (UR). After repeatedly
ringing the bell just before feeding the dog, the tone of the
bell alone was able to make the dog salivate.

1) Relevant features of classical conditioning

For our task of learning multimodal reward patterns,
certain properties of classical conditioning are of special
importance. The most important features of classical
conditioning for our application are blocking, extinction and
second-order-conditioning as well as sensory
preconditioning:

The term blocking denotes the phenomenon that occurs,
when a CS1 is paired with a US, and then conditioning is
performed for a second CS2 to the same US. In this case, the
existing association between the CS1 and the US blocks the
learning of the association between the CS2 and the US. The
strength of the blocking is proportional to the strength of the
existing association between the CS1 and the US.

For the learning of multimodal interaction patterns,
blocking is helpful, as it allows the system to emphasize the
stimuli that are most relevant. For instance, if a certain user
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Figure 3: Overview of the training algorithm
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always touches the head of the robot for giving positive
reward, and sometimes provides different speech utterances
together with touching the robot, then learning an
association between positive reward and these speech
utterances is blocked if there is already a strong association
between touching the head sensor and positive reward.

Extinction refers to the situation, where a CS that has
been associated with a US, is presented without the US. In
that case, the association between the CS and the US is
weakened. This capability is necessary to deal with changes
in user behavior and with mistakes, made during the training
phase, such as a misunderstanding of the situation by the
human and a resulting incorrect reward.

Secondary preconditioning and second-order
conditioning describe the learning of an association between
a CS1 and a CS2, so that if the CS1 occurs together with the
US, the association of the CS2 towards the US is
strengthened, too. In sensory preconditioning, learning the
association between CS1 and CS2 is established before
learning the association towards the US, in second-order
conditioning, the association between the US and CSI is
learned beforehand, and the association between CS1 and
CS2 is learned later.

This property is important for our learning method, as it
enables us, to learn connections between stimuli in different
modalities, as well as to continue learning associations
between stimuli given through different modalities even in
situations, where no clear positive or negative feedback can
be given by the trainer function as long as new stimuli, such
as new gestures or commands are presented together with
stimuli, that are already known and associated to a reward.
E.g. a new positive speech feedback is uttered with a typical,
known positive/negative prosody pattern.

2) The Rescorla-Wagner-Model

There are several mathematical theories, trying to model
classical conditioning as well as the various effects that can
be observed when training real animals using the
conditioning principle. =~ The models describe how the
association between an unconditioned stimulus and a
conditioned stimulus is affected by the occurrence and
co-occurrence of the stimuli.

In our work, we employ the Rescorla-Wagner model [2],
which was developed in 1972 and has served as a foundation
for most of the more sophisticated newer theories. In the
Rescorla-Wagner model, the change of associative strength of
the conditioned stimulus A to the unconditioned stimulus
US(n) in trial n, AVA(n), is calculated as in (2).

AVA(n) = oA BUS(n) (\US(n) - Vall(n) )  (2)

a A and pUS(n) are the learning rates dependent on the
conditioned stimulus A and the unconditioned stimulus
US(n) respectively, AUS(n) is the maximum possible
associative strength of the currently processed CS to the
US(n). It is a positive value if the CS is present when the US
occurs, so that the association between US and CS can be
learned. It is zero if the US occurs without the CS. In that
case, 4VA(n) becomes negative. Thus, the associative
strength between the US and the CS decreases. Vall(n) is the
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combined associative strength of all conditioned stimuli
towards the currently processed unconditioned stimulus. The
equation is updated on each occurrence of the unconditioned
stimulus for all conditioned stimuli that are associated with it.

One advantage of using conditioning as an algorithm for
learning the associations between positive/negative reward
and the user's corresponding behaviors is its rather quick
convergence, depending on the learning rate.

In this study, the learning rates for conditioned and
unconditioned stimuli are fixed values for each modality but
can be optimized freely. They determine how quickly the
algorithm converges and how quickly the robot adapts to a
change in reward behavior. The maximum associative
strength is set to one, in case the corresponding CS is present,
when the US occurs, zero otherwise. The combined
associative strength of all conditioned stimuli towards the
unconditioned stimulus can be calculated easily by
summarizing the pre-calculated association values of all the
CS towards the US.

The major drawback of the Rescorla-Wagner-Model is that
it is not able to model the effects of
second-order-conditioning and sensory preconditioning
directly. Therefore, we use a second pass of the
Rescorla-Wagner-algorithm to learn associations between
simultaneously occurring CS. In this second pass, the CS1
serves as the US for the conditioning of the CS2. In a third
pass of the algorithm, we update the relation between the US
and all CS2, that have an association to the actually occurred
CS1, using a learning rate « A2, that is the product of the
original learning rate « A and the associative strength
between the CS1 and the corresponding CS2

D. Post-Processing

In order to avoid the number of items in the HMM
database to grow too large and to improve recognition
accuracy, post-processing steps are applied to the HMMs in
the database after the training phase. During the post
processing HMMSs, which are similar in terms of
mathematical distance [5] as well as in terms of their
associations to the same rewards, are merged. HMMs that do
not have a sufficiently strong association with any of the
rewards are removed from the HMM database.

V. IMPLEMENTATION

The focus of the actual implementation of the system was
to develop a framework for conducting experiments that is
easy to extend and to adapt to new tasks. The framework
utilizes an AIBO ERS-7 robot. AIBO is a dog-shaped pet
robot which has roughly the size of a cat. It possesses 20
degrees of freedom and is able to communicate through
sounds, an LED-panel in its face as well as body movements.
It perceives its environment through various sensors,
including stereo microphones, a 640x480 camera, two
proximity sensors, 4 tactile touch sensors - one on its head
and three on its back - 4 touch sensors in its paws and an
accelerometer. It supports the 802.11b WLAN standard for
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wireless communication.

For the audio- and video recording we utilize a pair of
Logitech Fusion webcams for stereo vision as well as a
wireless lavalier microphone. AIBO is controlled using the
Sony AIBO Remote Framework [1]. The software uses the
HTK [17] as an implementation of Hidden Markov models
and the relevant algorithms for recognition and training, as
well as functions from the OpenCV[15] for video processing.

VI. EXPERIMENTS

In an experimental study, the participants were asked to
instruct the robot to perform the task described in section 3
with different restrictions posed on the reward behaviors that
they were allowed to use. The goal of this preliminary study
was to get an insight in typical user behavior during a
human-robot teaching task and record data for a first
evaluation of the conditioning-based second phase of our
learning method, which is presented in this paper. We also
aimed at finding out, how restrictions in allowed reward
modalities affect the frequency of reward given by the users
and to understand the variability of rewards given by a single
user in response to different robot behaviors. We further
investigated in how far reward patterns, that a user selects and
pre-records for interacting with a robot, resemble the ones
that he employs, if no restrictions are given.

In the experiment, four participants, all of which male
computer-literate graduate students aged between 25 and 35
without any prior experience of interacting with a pet robot,
were asked to train the robot using the training task described
in section 3. During the study, the robot was fully
remote-controlled and all in all 109 minutes of audio and
video data were collected, containing 141 reward instances —
64 positive and 77 negative ones. Figure 4 shows a sample of
the video taken during the experiment.

1) Experimental Setting and evaluation method

The participants were provided with cards, showing which

object was to be moved to what place and were told to instruct

Figure 4: Image captured from one of the videos of the experiment
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the robot freely and give rewards according to one of three
scenarios at a time. The order of scenarios was changed for
each participant to avoid sequence effects:

- Free reward: The user could chose freely in which
way to give reward to the robot

- Recorded reward: The user had to record his preferred
way of giving reward in advance and had to stick to it
throughout the experiment.

- Touch reward: The user had to touch the robot's head
sensor for positive and the robot's back sensor for
negative reward.

During the experiments, the robot was remote-controlled to
make different kinds of mistakes: simulating a technical
failure to pick up an object, simulating a misunderstanding
from the speech recognition and some unexpected behaviors
such as deliberately sitting down, to provoke negative
feedback. The different types of mistakes were balanced
within every pass of the experiment. Positive feedback was
expected for picking up the correct object, delivering it to the
right place and recovering from an error. After the
experiment, a questionnaire was provided to each participant
to evaluate his experience throughout the interaction.

The data from the experiments in the “Free Reward”
setting was transcribed manually and used for training the
associations between actions and their meanings in the
“reward association learning phase” of our learning method.
Transcribing the data by hand replaces the training of the
HMMs, which requires a larger amount of training data than
we obtained during our first experiments. The data for
training the actual HMMs is currently being gathered during a
second series of experiments. Each of the user’s actions was
transcribed by a starting and an ending timestamp
corresponding to the onset and the end of the
voice/gesture/touch-based stimulus, the name of the modality
(speech/gesture/touch) and the contents of the stimulus, that
is, which word/sentence was uttered, which type of gesture
was performed and which sensor was touched. We did not
include information on prosody in our transcriptions.

The reward from the trainer function was described by a
start timestamp, end timestamp and the keyword “positive”,
“negative” or “neutral”. Reward from the trainer function was
inserted after each observed reward pattern, independent from
the observed user behavior, depending only on the state of the
task execution at that time. This corresponds to the
information that the robot can access in a real training task.

The keyword “positive” was assigned to the rewards given
within the first 10 seconds after a subtask has been
successfully finished. The keyword “negative” was assigned
to every reward given while the robot was in an error state and
had not yet started to correct it. In all other cases, the stimulus
returned by the trainer function was “neutral”

For example, a situation, where the user says “good” and
touches the head sensor of the robot within the first 10
seconds after successfully finishing a task or sub-task, such as
the successful delivery of an object to its target place, is
transcribed as follows:
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0000001 0000210 speech good
0000003 0000007 touch head
0000015 0000025 feedback positive

2) Results

The conditioning algorithm has been trained and evaluated
separately for every user, using “leave-one-out”-cross
evaluation. The total number of stimuli, which included any
kinds of utterances, gestures or touch-actions, was 183
ranging from 26 to 56 between different users. Out of these
183 stimuli, 74 were neutral, 63 were negative and 46 were
positive. These numbers differ from the number of positive
and negative rewards, given above, as one reward can consist
of multiple stimuli. The average accuracy for classifying
between “positive”, “negative” and “neutral” utterances was
81.38%. The confusion matrix can be seen in table 1. Most
misclassifications occurred with neutral stimuli which were
misclassified as either positive or negative while confusions
between positive and negative stimuli were least frequent.

TABLE 1: CONFUSION MATRIX FOR THE CONDITIONING STAGE.

Positive Negative Neutral
Positive 21,72% 1,32% 5,57%
Negative 0,00% 3L,17% 4,31%
Neutral 2,88% 4,89% 28,51%

Left to right: expected classifications, Top to bottom: actual classifications

As for the user’s reward behavior in the described training
tasks, we found from the experiments, that the rewards which
were recorded by the users for being used in the “recorded”
scenario did not correspond as much as expected to the
rewards given in the “free” scenario. Only 8 of 22 positive
and 5 of 27 negative rewards were given in the same way as
the one that the user considered as his “favorite” way when
recording rewards for the “recorded” scenario.

But even within the touch and recorded scenarios, the
participants did not stick to the designated reward behavior.
Although they were clearly instructed not to use different
rewards in the '"recorded" and "touch" scenario, all
participants gave additional or fully incorrect positive and
negative reward. In case of the “touch” reinforcement
principle, 44 rewards were given by the participants, 19 of
them correct rewards, 17 rewards that contained an additional
speech utterance or gesture and 8 rewards that did not at all
include touching the head or back sensor, most of them
providing a speech utterance only. Out of the 48 rewards
given with the "recorded" reinforcement principle, 23 were
correct, that is, using the same words and roughly the same
gestures as recorded, 18 rewards contained additional speech
utterances or gestures and 7 rewards were completely
different from the recorded ones.

The amount of reward given varied with the allowed
reward modalities, as can be seen in Figure 5. Most reward
was given in the free reward scenario, where 47.9 percent of
the positive situations and 96.4 percent of the negative
situations were rewarded, while least reward was given in the
touch reward scenario where a reward was given for 34.7
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Figure 5: Percentage of positive and negative behaviors of the robot
that result in positive/negative reward

percent of the positive and 80.5 percent of the negative
situations. The reason for the apparent negative bias in
rewards is that most of the time positive reward was only
given for reaching the final goal but not for reaching
sub-goals like approaching the correct object or correcting a
mistake. The robot did not stop and wait or prompt the user
for reward in these situations. On the other hand, incorrect
performance of the robot was quite obvious and therefore
typically resulted in a negative reward.

In a questionnaire, the participants could rate their
agreement with different statements concerning their
interaction with the robot on a scale from 1 (completely
agree) to 5 (completely disagree). For the statement “I was
able to instruct the robot in a natural way”, the free reward
received a rating of 1.25 (SD=0.3), recorded reward was rated
3.25 (SD=0.3) and touch reward was rated 4.35 (SD=0.6). For
the statement “I would like to interact with a real service robot
in the same way”, the ratings were 1.5 (SD=0.3) for free
reward, 2.0 (SD=0) for recorded reward and 4.5 (SD=0.6) for
touch reward.

VII. DiscussioN

Although the small number of participants does not allow
for a sound statistical analysis, the results suggest that users
are quite sensitive to restrictions in applicable reward
behaviors. Therefore techniques that allow reward and
instructions to be given to a robot as freely as possible would
be desirable.

Moreover, our data shows, that pre-recording fixed
patterns for giving reward does not suffice to enable a user to
provide reward to a robot in his or her preferred way.

As results from the HMM based first stage of our learning
method, are still missing, the results from the conditioning
phase can only be seen as an upper boundary for the
performance of the whole learning method. The main cause
of misclassifications of the conditioning phase were
utterances, that were used only once within our data. This
problem was caused by the small amount of training data, we
had gathered within our first experiment. It is being addressed
by currently ongoing experiments with a larger number of
participants and a changed experimental setting. The new
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setting is based on a game task that allows the user to give
more positive and negative rewards in a short time by
minimizing the interaction-free task execution time, which is
mainly caused by the slow walking movements of the AIBO
pet robot.
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