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Abstract— In this paper, we propose a novel interaction model
for a human-robot cooperative task. The CEA (Commands
Embedded in Actions) model reduces a human work-load
because a user of a robot needs less inputs and outputs than
DCM (Direct Commanding methods) like gesturing. We propose
ECEA (Extended CEA) in order to deal with more complicated
tasks than CEA. On the cooperative sweeping task between a
human and a mobile robot, we apply temporal extension as one
of ECEA instances. Mmultiple commands are embedded in the
human action by the extention and the robot performs more
complicated task. The experiments for conforming reduction of
a human work-load using ECEA are conduced on the sweeping
task. Human cognitive loads are measured as human work-
loads and compared between ECEA and DCM. The results of
the experiments showed that the ECEA minimized a human
cognitive load.

Index Terms— interaction design, cooperative task, sweeping,
cognitive load, mobile robot

I. INTRODUCTION

There are robots spreading among people as a progression
of its technologies. We can purchase pet robots like AIBO
[1] or cleaning robots like Roomba, and interact with them
in a home environment. We will see tour-guide robots [2] in a
museum in the near future. Robots thus have transferred their
scene from industrial environments to home environments.
How a home robot interacts with people is one of most
important issue to be accepted by people who want to share
their time and spaces with robots.

Various researches have been studied in a field of human-
robot interaction. These studies are able to classify into two
groups of interaction. The first is the group of using direct
commanding method between a human and a robot. Most of
the researches deal with methods of communication such as
gesture [3], [4], [5], speech [6], [7], [8] and using control
devices like joysticks or computers [9], [10], [11]. We call
this type of interaction DCM (Direct Commanding Method).
Fig. 1 shows DCM interaction model. In this model, a human
has two tasks: to control a robot by commanding and to act to
environment. For example, in the scenario of using a cleaning
robot, it can sweep the region pointed out by a human. The
human has to point out a region and to remove obstacles in
order for the robot to move about in the environment. In this
case, interactions between a human and a robot are described
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as follow (a human, a robot and environment are expressed
as H, R and E respectively) :

o H=-R: the human points a cleaning region by gesturing.

e R=-H: the robot indicates acknowledgement of a gesture
command.

e H=FE: the human removes obstacles.

o« E=-H: state of the environment is perceived.

e R=-FE: the robot cleans a region and moving about in
the environment.

o E=-R: state of the environment is sensed.

In contrast, the second group has no explicit commanding.
There are studies related human-robot cooperation such as
the cooperation of carrying a long or big object by a human
and a robot based on a manipulator [12], [13], [14], and
outdoor cooperative tasks by a human and a humanoid [15].
We call this type of interaction CEA (Commands Embedded
in Actions). Fig.2 shows CEA interaction model. CEA has
no direct interaction between a human and a robot because
the human can control the robot by executing his/her actions
to environment. For example, in the case of carrying a long
object by a human and a manipulator robot, its interaction is
described as follow:

e H=-FE: the human moves about in the environment.
o« E=-H: state of the environment is perceived.

e R=-FE: the robot moves about in the environment.

o E= R: state of the environment is sensed.

The robots can work for helping a human by sensing force of
the shared object without DCM. The human does not need to
execute direct commanding to a robot and understand a way
for communication with it.

CEA reduces a human work-load because it needs no addi-
tional action and no understanding a way for communication.
In fact, we can find its applications of CEA such as automatic
doors, automatic faucets and so on easily, and they are
certainly convenient. However, these applications deal with
easier commands because tasks of automatic doors are not
so complicated. We then consider CEA needs to be extended
for more complicated tasks, and propose ECEA (Extended
CEA). In this paper, we investigate an application of ECEA
about cooperative sweeping by a human and a mobile robot.

In the rest of this paper, we describe the detail of Extended
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CEA and its specific application, cooperative sweeping in
Section 2 and 3 respectively. In Section 4, we describe
experiments to compare ECEA with DCM in terms of hu-
man’s cognitive loads. We discuss the experimental results in
Section 5, and conclude in Section 6.

II. EXTENSION OF COMMANDS EMBEDDED IN ACTIONS

Before describing the extension of CEA, we explain Action
Coding System (ACS) [16]. The ACS is the key method of
embedding commands into human actions.

A. Action Coding System

We employ ACS to decompose a human action into prim-
itive acts and to embed commands into his/her action. The
ACS provides a general description of the events realized by
a human in carrying out the actions of simple activities of
daily living tasks. It was used for analyzing the brain damaged
patients’ behavior [16]. The ACS describes two levels of
action units which are defined as follow:

o A-Is: A-1 units are the smallest components of a behav-
ioral sequence that achieves a concrete, functional result
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(1) MOVE (x) TO (location) VIA (instrument) BY (manner)
(2) ALTER (x) TO (location) VIA (instrument) BY (manner)
(i.e. take possession of object x)

(i.e. relinquish possession of x)

(3) TAKE (x)
(4) GIVE (x)

Fig. 3. Four basic A-1 types

- Opening sugar pack:
ALTER sugar pack TO open BY tearing
- Pouring sugar:
MOVE sugar TO in coffee VIA pack BY pouring

Fig. 4. Example of coffee making task

or transformation, describable as the movement of an
object form one place to another or as a change in the
state of an object.

o A-25: A-2 unit is a group of part of A-1s that accomplish
one of basic subgoal of the task.

For example, Schwartz et al. [16] coded four A-1 types
showed in Fig.3 by reviewing 28 breakfast videos. All
MOVES and many ALTERS contain within them the taking
and relinquishing of possession of objects. To minimize com-
plexity and avoid multiplying action descriptions, they coded
TAKE(x) and GIVE(x) only when the change of possession
was temporally discontinuous with the action carried out on
x. Using this notation, specific acts are expressed in Fig.4. In
our study, we employ the A-1s as primitive units of human
action.

B. Extension of CEA

Using the ACS, we can clarify the structure of CEA. In the
case of using an automatic door, the action of “ALTER door
To open” is embedded in a human A-1 unit of “MOVE one’s
body To beyond the door” as a command. The “ALTER” is
performed by a machine instead of the human. However, this
is one-shot interaction: only one robot’s action similar to an
A-1 unit corresponds to a human A-1 unit. It is difficult to
embed multiple commands into a human A-1 unit by CEA.
We then consider CEA has the limitation for performing more
complicated tasks.

The idea of ECEA is that the changes of human actions
with keeping his/her work-load low and increases A-1s where
commands can be embedded. The definition of ECEA’s
guideline is described as follow:

o To minimize spatial change of a human action.
o To minimize temporal change of a human action.

They minimize the differences in trajectories or in time
between an original human action and an extended one.
This kind of extension is realized by embedding commands
between A-1 units. It means a relaxation of the strength of a
connection between A-1 units. However ACS provides can-
didates of the point where command are embedded, it cannot
choose the optimal one because such a point significantly
depends on tasks.



- Original action sequence:
TAKE sugar pack
ALTER sugar pack TO open BY tearing

- After applying temporal extension:
TAKE sugar pack

KEEP taking (keep final state of taking)

ALTER sugar pack TO open BY tearing
KEEP altering

(keep final state of altering)

Fig. 5. Example of temporal extension
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The new command “KEEP” is employed. It keeps a final
state of a previous act. An example of the “KEEP” is
described in Fig.5. Such extension follows our guideline. To
confirm effectiveness of ECEA, we apply ECEA for a specific
task, a cooperative sweeping between a human and a robot,
and perform experiments to measure human cognitive loads
in the task.

III. DESIGN ON COOPERATIVE SWEEPING

We deal with a human-robot cooperative sweeping by a
human and a small mobile robot as a cooperative work. A goal
of the cooperative task is to sweep out a desk including the
region of under an object. In this section, we first describe an
experimental environment and a specification of small robot.
Next, we describe A-1 scripts of this task and apply ECEA.

A. Environment and robot

We assume the environment where a human and a robot
work cooperatively is a place used by a human routinely such
as a desktop. A desk swept out by a robot has a flat surface
and a wall which encloses the region for keeping a robot not to
fall. We use a small mobile robot Kheperall (Fig.6). The robot
has eight infrared proximity and ambient light sensors with up
to 100mm range, a processor Motorola 68331 (25MHz), 512
Kbytes RAM, 512 Kbytes Flash ROM, and two DC brushed
servo motors with incremental encoders. The program written
by C-language runs on the RAM.

B. Tasks

We assign tasks for a human and robot with considering
competence of the mobile robot, a work-load for human.
Assigned tasks for a human and a robot are described re-
spectively:
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e A robot’s tasks are to sweep out a desk autonomously
with strategy of a random turn and to sweeps out the
region of under an object when a human moves the
object.

e A human’s task is to move an object in the environment.
Our robot can only use local information which is obtained
by its sensors and cannot move objects by its hardware equip-
ment. It is difficult to employ effective region covering[17]
with creating map because it needs a correct position of a
robot. Our robot cannot obtain its correct position by its
sensors (e.g. a dead reckoning method has low reliability
because of its accumulated errors).

To reduce a human work-load, it is effective to sweep
out the region under an object when a human moves the
object. However, it is difficult for our robot to sweep there
automatically because it has no competence to detect the
region of under an object. A human needs to control the robot
by multiple explicit commands using DCM. CEA also cannot
apply for this because it cannot deal with multiple commands.
We therefore extend CEA and create A-1 scripts of human
actions. The human has two actions to achieve his/her task:
(1) pick up an object and put down it after cleaning and (2)
move an object to another place and move it to an initial
location after cleaning. In the action of (1), we can see that
the robot can sense the edge of the object above it by its local
sensors and sweep out the region of under the object while a
human picks up it. The robot repeats to turn when it senses
the edge of an object, and then the sweeping is performed.

We then introduce a A-1 unit “KEEP” which keeps a
final state of a previous act. The A-1 units scripts of an
original human action and an extended one are described in
Fig.7 and Fig.8 respectively. The “KEEP” in the extended
action is originally included in the “MOVE”, and it is not
completely new action for a human. In this point, we consider
a human has no additional load. As a result of the extension,
multiple commands are able to embedded while the “KEEP”
is continued. This is a specific instance of ECEA and we call
this temporal extension.

IV. EXPERIMENTS

We conduct experiments to confirm that our interaction
design reduces work-load of human. We examine human
cognitive load to evaluate human work-load, and compare
the load between ECEA and DCM. The experiments are
performed on our experimental system described in the next
subsection.

A. Experimental system

Fig.9 shows the experimental system which can indicate
a robot’s trajectory. This system consists of a sweeping area
and a projection system. In experiments, a human interacts
with a robot on the sweeping area in Fig.10 indicating a
swept location by the projection system including a personal
computer, a projector, and a USB camera.

The projection system detects a robot’s location using a
picture of two beams of infrared LEDs equipping on the robot.



(1) TAKE object

(2) MOVE object TO z
(3) MOVE object TO x
(4) GIVE object

(z: a vertical location)
(x: an initial object’s location)

Fig. 7. Typical acts of moving the object

(1) TAKE object

(2) MOVE object TO z
(2’) KEEP moving

(3) MOVE object TO x
(4) GIVE object

(keep final state of moving)

(1)TAKE | [(2)MOVE (4)GIVE

)
m

Fig. 8. Applying ECEA with temporal extension

Swebi .. .

Projector

USB Camera

Fig. 9. Experimental system

The robot’s location is calculated by image processing in the
picture from the camera, and then an image indicating the
trajectory is created with the location. This image is ultimately
projected on the sweeping area.

The projected image also includes small square cells. A cell
is lit when a robot enters the cell in real time. These small
cells therefore express the trajectory of a robot. The sweeping
area having a width of 44 cm and a height of 33 cm is divided
into 16 x 12 cells. Cells of 3 x 3 approximately correspond
to the area of a robot.
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Fig. 10.

Sweeping area

L3: Interaction (EC/SC/HC)

L2: Random Sweeping

L1: Obstacle Avoidance

Sensor Value Action

Fig. 11.  Subsumption architecture

B. Behavior Design of Mobile Robot

A robot is implemented by behavior-based approach, and
we adopt subsumption architecture [18] to manage following
behaviors:

e LI Obstacle Avoidance: a robot stops when it approaches
obstacles, and it goes backward when an obstacle ap-
proaches it.

e L2 Random Sweeping: a robot going forward when
no obstacles are on its front, and turning for random
direction when it senses obstacles such as wall.

e L3 Interaction: a robot turns randomly when an object is
above it or when it receives a command from a human.

Fig.11 shows the robot’s behaviors into the three layers in
subsumption architecture. Each layer asynchronously checks
the applicability of behaviors and executes applicable ones.
Higher layers suppress lower layer’s behaviors, and lower
layers have more reactive behaviors. The behaviors of each
layer consist of multiple actions. When the system obtains
multiple outputs, it generally selects the highest layer’s action.
Each layer has output frequency of action to control the
robot smoothly. We set the frequency as obstacle avoidance:
an action by Smsec, sweeping: 10msec, interaction: Smsec,
obstacle avoidance and interaction occur most frequently.

C. Cognitive load measurement

We measure the cognitive load of a human interacting with
a robot by ECEA and DCM for comparison. Two methods are
chosen as typical DCM without extra devices such as remote
controllers. These control methods are shown in Fig.12, and
the detail is described as follow:

EC : A robot performs sweeping by ECEA.
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Fig. 12.  Three types of interactions

SC : A robot sweeps with receiving a sound command
by hand clapping.

HC : A robot sweeps with receiving a command by hand
as blocking the robot’s line.

The robots receiving such commands are prepared by
adding extra sensors such as microphone or modifying the
program of a robot. When a robot controlled by DCM
receives a command from a human, it turns from 90° to 180°
randomly. A robot controlled by ECEA also turns from 90°
to 180° randomly when it senses the edge of the object over
its head.

Measurement starts when a robot enters the region of under
an object, and it continues until all cells of the region are
swept. A box whose size is 4 x 4 cells is employed because
sweeping time of the region is appropriate for subjects and
the measurement. In the EC, subjects keep to pick up an
object until all the cells of under the box are swept. In the
SC and HC, first, a human relocates a box to a corner of the
sweeping area, and then send a command for a robot to be
turn by making sounds or approaching their hand to it when
it is likely to run out from the region of a box.

We use a dual task method to measure human cognitive
load. Subjects have to do mental arithmetic as a secondary
task while controlling the robot as a primary task [9], [19].
They count backwards by three from a randomly selected
three-digit number vocally. We obtain the average number of
correct answers per second, and evaluate the human’s cog-
nitive load for controlling each robot. Subjects are required
to calculate as quickly as possible, and to prioritize the con-
trolling a robot over the counting. They practice controlling
robots and the counting well before experiments begin. The
order of EC, SC and HC for each subject is determined
at random, and these experiments are recorded three times
respectively for a subject. Subjects are also measured counting
ability without operations of a robot before a measuring
of EC, SC, or HC respectively. The counting ability is the
number of correct answers of the counting for 30 seconds.

D. Results

Subjects are eight men and four women between the age
of 22 and 32. Each subject has three scores: EC, SC, and
HC. A score is the average of normalized number of correct
counting answers per second for a subject. The normalization
is to divide the correct answers per second by correct answers
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Fig. 13. Results of scores and differences

per second without operations of a robot. Fig.13 shows
averaged scores, standard deviations, and differences tested
by Dunnett’s test. Each EC, SC and HC is the average of
all subject’s scores. The number 1.0 means counting ability
of each subject without operations of a robot. EC has the
highest average. The difference between EC and HC has a
significant difference (p << 0.01,a = 0.01,¢ = 3.938).
The difference between EC and SC also has a significant
difference (p = 0.033,a = 0.05,¢t = 2.414). Fig.14 shows
the experimental appearance.

The results of the experiments show that the ECEA reduces
a human cognitive load in comparison with other DCM.
ECEA has a low cognitive load because of minimizing cost
of sending commands and also shortening the trajectory of
moving a box. Therefore, ECEA plays the significant role in
a human-robot cooperative task.

V. DISCUSSION

Physical loads appear to influence the cognitive loads.
Each DCM accompanies motions of human arms. Hence, the
measured cognitive loads would include a load of the motions
and a load of human attention. However, we consider that the
effects of human motions on the measured cognitive loads
keep a minimum because the most natural and intuitive form
of task performance by a human is to perform the task in the
usual manner: using his/her own hands. Actually, the subjects
have no choice except to clap his/her hands or to move his/her
arms in the experiments. Therefore, the difference between
ECEA and DCM is attention for a robot. A subject has to
repeat the cycle of observation of a robot and execution of
moving his/her arms in the experiments of SC and HC. In
contrast, in the experiments of EC, a subject does not need
to concentrate his/her attention on a robot, and he/she can
interact with environment naturally like normal CEA in Fig.2.
In addition, the experiments are set to be fair deal between
ECEA and DCM in terms of controlling a robot without
specific devices and the robot’s software codes for its behavior
are almost same among EC, SC and HC.

An advantage of the CEA/ECEA model over conven-
tional models of plan-recognition-based cooperation is that
it does not need complicated and computational costly plan
recognition process. For example, in Grosz and Sidner’s
SharedPlan[20], a robot needs to infer user’s beliefs and



Fig. 14. Experimental Appearance

intentions. However, it has a disadvantage that it is not able
to change the cooperation plan when the situation is changed.

VI. CONCLUSION AND FUTURE WORK

We first classified present human-robot cooperation into
two groups of interaction: DCM (Direct Commanding
Method) such as gesture commanding method and CEA
(Commands Embedded in Actions) which a human could
control a robot by through execution of his/her actions to
environment. We proposed ECEA (Extended CEA) in order
to deal with more complicated tasks than CEA. On the coop-
erative sweeping task between a human and a mobile robot,
we applied temporal extension as one of ECEA instances
to the human action. Multiple commands were embedded
in the action by the extention and the robot performed
more complicated task with the human. The experiments for
conforming reduction of a human work-load using ECEA
were conduced on the sweeping task. Human cognitive loads
were measured as human work-loads and compared between
ECEA and DCM. The results of the experiments showed that
the ECEA minimized a human cognitive load. We therefore
confirmed that our temporal extension was able to apply more
complicated task than CEA and caused lower cognitive load
than DCM.

We currently investigate other instances of ECEA and apply
them to many practical tasks such as daily living tasks and
more complicated tasks with considering A-2 units of action
coding system. We are planning to examine another aspect of
ECEA’s advantages. For example, a human might notice the
functions of a robot easier by using ECEA. In addition, to use
higher level embodied robots like AIBO is also necessary.
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