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Abstract

We have proposed a fast learning method that en-
ables a mobile Tobot to acquires autonomous behav-
tors from interaction between human and robot. In
this research we develop a behavior learning method
ICS (Interactive Classifier System) using interactive
evolutionary computation considering an operator’s
teaching cost. As a result, a mobile robot is able to
quickly learn rules by directly teaching from an oper-
ator. ICS is a movel evolutionary robotics approach
using classifier system. In this paper, we investi-
gate teacher’s physical and mental load and proposed a
teaching method based on timing of instruction using

1CS.

1 Introduction

Some researches of the approach using interaction
with the human who exists in environment has been
carried out. Particularly for the robots that do not
have a priori knowledge or commit trial and error in
the initial stage, human instruction is the very ef-
fective acquisition technique of autonomous behavior.
However, in a certain level of autonomous robot, it
is not necessary to follow instruction from human all
the time. In the stage which does not need instruc-
tion, robot should demonstrate its autonomy based
on the instruction rules stored by interaction with hu-
man without putting a burden on human. Therefore,
we need to the technique of establishing a robot’s au-
tonomy from through interaction between human and
a robot is required.

Our purpose is realizing a robot’s autonomy by re-
ceiving the instruction information as a suitable act
from human, and gaining act rules evolutionally with
the state recognition which can solve a task. We call
such a framework Interactive Evolutionary Robotics
(IER). In this paper, we propose Active Teaching
method taught by timing regarding a teacher’s cogni-
tive load in IER. We compared it with previous teach-
ing methods by simulation experiment.
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2 Related Literature

Asoh et al.[1] proposed the framework that a mo-
bile robot built the map information of the unknown
environment, called Jijo-2 which performs a commu-
nication by voice conversation with human. However,
it doesn’t get the behavior of the robot by the inter-
action through human and a robot. Ishiguro et al.
[6] built the state space of the mobile robot by rein-
forcement learning. However, it is learning by using as
a sample action that the introduction human taught.
After that, a robot only builds an internal state and
there is no interaction with human. Horiguchi et al.
[4] used the idea of the mutual leadership pattern in-
teraction as the design of the interaction of the robot
with the human and realized the cooperation behav-
ior of the automation process of a mobile robot and
human operations by using power feedback. However,
the result of learning didn’t reflected on the behavior
acquisition of the robot. Inamura et al. [5] indicate
acquirement behavior of a robot using Bayesian Net-
work based on a dialog with a user. It is different
from our technique to get behavior gradually by the
evolutionary computation technique.

3 Interactive Teaching
3.1 Teacher’s Load

In this research, in order to measure a teacher’s
load simply, it divides into mental load and physical
load. We consider the timing of teaching as mental
load and the number of times of teaching as physi-
cal load respectively. Generally, in interactive evolu-
tionary learning, the more it is taught, the better the
performance is. However, human labor is not unlim-
ited. It is clear that it is trade-off like it is better as
instruction cost lowers. Human’s labor has a limit in
cooperating with a machine without tiredness, carry-
ing out comparison evaluation of many individuals (or
rules) for every generation, and inputting an evalua-
tion value. This has been a serious practical problem.
Moreover, as the second problem, the number of indi-
viduals and the number of search generations must be
lessened as compared with the usual EC search in or-
der to reduce physical and mental load in case human
evaluates individuals. It makes convergence worse. As



a result, it is difficult to reduce the number of times
of teaching.

On the other hand, IER consider the following
things as instruction. First, direct operation of the
robot by input equipment is performed. Next, a rule
is automatically generated from the operation and the
environment information at that time. In this frame-
work, it is necessary to perform neither comparison
evaluation of many individuals, nor the input of an
evaluation value like the conventional interactive evo-
lutionary learning. Thereby, it is expected physical
and mental load is reduced sharply.

Moreover, we will consider the case where inter-
active learning is applied to real robot environment.
When a teacher directs by operating a robot intu-
itively from input equipment (teaching), a rule is cre-
ated automatically, and a robot learns autonomously
when there are no directions. We consider that this
load problem is reduced by this method in the point
that a system learns autonomously, the point that a
rule is automatically created by human’s intuitive in-
struction, and the point that additional study can be
performed anytime.

3.2 Timing of Teaching

It is very difficult as above-mentioned to reduce the
number of teaching. Then, in this research, in order
to reduce an informer’s cognitive load, we attention
to the timing of teaching. We think that the tim-
ing of teaching is greatly concerned with the above-
mentioned teacher’s load. Generally, timing of teach-
ing is performed beforehand (Off-line Teaching), or
has much what is performed at the time of the demand
of a system (Passive Teaching). Since these techniques
have left the timing which instruction performs to the
system side, in order to teach, a man side must stand
by. Not to mention the experiment in a simulation, a
teacher’s load increases further in the real environmen-
tal learning that needs more time for an experiment.

Then, we propose the following Active Teaching
methods. We conduct the experiment, which measures
cognitive load as compared with the conventional Off-
line Teaching method and Passive Teaching method.
And we compare them by psychological evaluation.
Each technique is explained below.

3.2.1 Active Teaching

In this teaching method, it is possible that a teacher
gives instructs to a robot at favorite timing. In this
research, this is called Active Teaching method. See-
ing a robot perform autonomous action, a teacher op-
erates a robot to favorite timing and makes a task.
Thereby, teacher can instruct to a robot being uncon-
scious of teaching, without worrying about whether he
teaches by seeing a robot’s action. Thereby, a teacher
can teach without worrying about whether being con-
scious of teaching, whether it teaches, or not when
he/she saw a learner’s all actions. However, it is diffi-
cult to include such specification in a system side.
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Figure 1 Interactive Evolutionary Robotics

3.2.2 Off-line Teaching

Off-line teaching is the method of performing explo-
ration by instruction at Teaching Mode beforehand,
and performing exploitation at Autonomous Behavior
Mode.

3.2.3 Passive Teaching

We define passive teaching method as the method
of directing teaching at the time of the demand of a
system to a user. Mishima and Asada el al. have
improved that the efficiency of learning gets worse by
Passive Teaching for a gap (Cross Perceptual Aliasing)
of the environmental recognition produced between a
teacher and a learner [8]. In study efficiency, Passive
Teaching has little futility of teaching and is consid-
ered to be a good method. However, the teacher has to
be supervising until a system requires action. More-
over, since it does not know when the timing comes,
it is thought that a mental load becomes large to the
number of instruction.

4 Teaching based on Interactive Evo-
lutionary Robotics

4.1 Interactive Evolutionary Robotics

Interactive Evolutionary Robotics (IER) is a frame-
work aiming at performing efficient real environmental
robot study using the evaluation capability of Inter-
active Evolutionary Computation (IEC). IEC is the
method of including evaluation of human in the evalu-
ation system of a system directly, and searching evolu-
tionally. Moreover, IER is an approach which designs
a robot interactively using the evolutional calculation
techniques, such as a genetic algorithm, genetic pro-
gramming, and an evolution strategy. The framework
figure of IER is shown in Fig.1.

We think that the method in this framework is ef-
fective in the learning of an initial stage that must be
performed by trial and error. Moreover, we also expect
the effect of obtaining a solution to the partial solution
that cannot be solved only by human, through interac-
tion between human and robot. Furthermore, since it



is not dependent on learning algorithm, this technique
is widely applicable to general evolution robotics.

4.2 The XCS Classifier System

Classifers in XCS have three main parameters: (1)
the prediction p, which estimates the payoff that the
system expects if the classifier is used; (2) the predic-
tion error €, which estimates the error of the prediction
p; and (3) the fitness F', which estimates the accuracy
of the payoff prediction given by p.

On each time step, the system input is used to build
a matchset [M] containing the classifiers in the popula-
tion whose condition part matches the current sensory
inputs. If the match set does not contain any classi-
fiers, a new classifier which matches the current inputs
is created through covering. For each possible action
a; in [M], a systempredictionP(a;) is computed as the
fitness weighted average of the predictions of classifiers
which advocate action a; is performed. Action selec-
tion can be deterministic, i.e. the action with the
highest system prediction is chosen, or probabilistic,
i.e. the action is chosen with a certain probability
among the possible action.

Classifiers in [M] which advocate the selected action
form the current actionset[A]. The selected action
is then performed in the environment, and a scalar
reward 7 is returned to the system together with a
new input configuration.

Classifier parameters are updated on each time-
step. The updates occur in the action set [A]_; from
the previous time-step. First, a Q-learning-like pay-
off P is computed: P = r_; + ymax, P(a), where
r_1 is the reward on the previous time-step, P(a) are
the system predictions for the current time-step, and
v is a discout factor(0 < v < 1). Then, each classi-
fier in [A]_1, is updated as follows. The prediction p
is updated using the Widrow — Hof fdeltarule with
learning rate (0 < 8 < 1) : p «— p+ B(P — p).
The prediction error € is updated with the formula:
€ «— e+ B(|P — p| — €). The fitness update is slightly
more complex. Initially, the prediction error is used
to calculate the accuracyk of each classifier as kK = «
(/€)™ for € > €g, else Kk = 1. Then, each classifier’s
reactiveaccuracyr’ is computed: k' = k/3 04 | K.
Finally the fitnesses are adjusted: F «— F+ (k' —F).

The genetic algorithm is applied to [A]_1, though
not usually on every time-step. It selects two classifiers
with probability proportional to their fitnesses, copies
them, and with probability x performs crossover on
the copies; then, with probability p it mutates each
allele. The resulting offspring are inserted into the
population and two classifiers are deleted See (Wil-
son95) [10].

4.3 Interactive Classifier System

We have so far developed learning system Interac-
tive Classifier System|[7] using XCS based on IER. ICS
is the robot study model that can also perform study
by instruction in addition to autonomous study. It
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Figure 2 Overview of Interactive Classifier System
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Figure 3 User Interface

included the interactive function of IEC in (Learn-
ing Classifier System (LCS). ICS uses the above-
mentioned XCS which is one of the LCS as study al-
gorithm. The framework figure of the built system is
shown in Fig.2.

ICS consists of a rule generation component (RGC),
a sensor processing component (SPC), a display com-
ponent (DC) and a reinforcement component (RC).
Each module is explained below.

O RGCO Rule Generation Component creates the
rule by instruction. A teacher operates it using
an input equipment, looking at the information
displayed on an interface in a robot. A sensor
processing part (SPC) receives the operation his-
tory of a there, and the sensor information of the
robot at that time, RGC creates a rule newly from



it, and it adds to a rule list. The creation proce-
dure of a rule was improved so that a rule could
be created from instruction information (the ac-
tion to which operator operated the robot) on the
basis of XCS[10].

1. ICS receives a robot’s sensor information X
and instruction information a; from SPC.

2. Some classifiers that matched X is moved
from a group [P] to a match set [M]. ICS
turns regularly the Prediction value of clas-
sifier which supports each act a; in [M] with
a Fitness value, and creates P(a;). The value
of P(a;) is put on Prediction Array, and the
act of classifier chosen by P(a;) is chosen by
act selection methods. Act selection meth-
ods are performed by deterministic selection
method or roulette wheel selection method.

3. If a; # a; to compare act a; chosen by act
selection methods and act a; obtained by
teaching, the action part of the rule which
has a; in an action part in [M] will be rewrit-
ten to a;. A change will not be made if
a; = Gt.

4. The action set [A] which consists of classifiers
in [M] which supports selected act a; is cre-
ated. When act a; or a; is sent to an effect
machine, and in case of as, reward Tieqen 18
given immediately. When there is no input
of a;, remuneration 7., is returned from
environment.

0 RCO Reinforcement Component is a reinforce-
ment learning part in classifier system. It learns
by updating the parameter of classifiers chosen
last time step. When there is no operation of a
teacher, a robot can act autonomously from the
rule created by then.

ODCO Display Component takes charge of the dis-
play of the data processed by SPC. The developed
interface is shown in Fig.3.

O SPCO Sensor Processing Component performs
processing of a robot’s various sensors and pro-
cessing of teaching information. It is sent to DC
and RGC and the processed data is displayed and
ICS creates classifiers from them.

4.4 Procedure of Learning

ICS performs two modes: a teaching mode and an
autonomous behavior mode by turns. The procedures
of the two modes are shown in the following.

Teaching mode

1. Prepare the robot’s state space.

2. It teaches depending on any of the procedure of
the timing of three kinds of instruction they are.

3. An operator creates a rule by instruction informa-
tion and environmental information at the time.

4. If there is no rule belonging to the same cluster,
it will add as a rule newly.

5. If there is a rule belonging to the same cluster, a
strength value will be updated by reward.

Autonomous behavior mode

1. The robot behaves by conforming to stored rules
in Rule List.

2. If the average of the number of the time steps
from GA of just before in a match set exceeds a
threshold, GA will be performed to the match set.

4.5 Procedure of the Timing of Teaching

The timing of teaching has three timing described
in Chapter 3.2. Each procedure is shown below. Each
is performed in Step 2 in teaching mode.

Off-line Teaching

1. A teacher directs action to state space.

Passive Teaching

1. Act A will be performed if there is effective action
A to state space.

2. If there are no directions, directions will be re-
quested to a teacher.

Active Teaching

1. To state space, if there are directions from a
teacher, it will perform.

2. If there are no directions, a robot will perform
exploration autonomously.

5 Experiment
5.1 Experimental Settings

We test a preliminary experiment to evaluate the
effectiveness our ICS. This is a very simple domain.
We use Woods2 environment which one of Wood-like
environments[10] as an environment in the experience.
It used as a test-bed in several works based on classi-
fier system. Fig.4 shows Woods2 environment. This
environment is markovian multi-step problem. The
left and right edges of Woods2 are connected, as are
the top and bottom. Woods2 has two kind of ”food”
and two kind of "rocks”. F and G are the two kind of
food, with sensor codes 110 and 111, respectively. O
and Q are the two kind of objects, with sensor codes
010 and 011, respectively. Blanks have sensor code
000. The system, here regarded as an animat or ar-
tificial animal, is represented by *. To sense its envi-
ronment, * is capable of detecting the sensor codes of
objects occupying the eight nearest cells. The encod-
ing of a classifier is as follows. A classifier, for example,
is the 24-bit string 000000000000000010010110. The
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Figure 4 Woods2 Environment

left-hand three bits are always those due to the object
occupying the cell directly north of *, with the remain-
der corresponding to cells proceeding clockwise around
it. The animat’s available actions consist of the eight
one-step moves into adjacent cells, with the move di-
rections similarly coded from 0 for north clockwise to 7
for northwest. If a cell is blank, * simply moves there.
If the cell contains food, * moves to the cell, ”eats” the
food, and receives a reward(7,,m, = 1000). ICS used a
population size, N, of 800 classifiers. Parameters were
set as follows: o = 0.1, 8 = 0.2, v = 0.95, 6§ = 25,
€0 = 0.01, x =0.8 and p = 0.04

5.2 Experiment Description

We conducted the comparison experiment with Ac-
tive Teaching, Passive Teaching or Off-line Teaching.
It is one trial, when it arrives at the goal or 50step
movement is carried out. Seven graduate students
were experimented on the subject by considering 50
trial as one experiment.

The primary task in the experiments is to instruct
an agent through numeric keypad. In experiments in-
volving human cognitive load, experiment participants
are sometimes asked to perform a secondary task (or
tasks) as they perform a primary task[3]. In our exper-
iment, subjects must solve two digit addition problems
while performing the agent instruction task.

5.3 Experimental Results

Primary Task Effectiveness

In this work, we investigated performance in aver-
age steps to food (Step to Food) and average of gen-
erated population size (Population Size) Fig.5 shows
the steps to the foods. And, Fig.6 shows Population
Size.

Each teaching technique showed performance bet-
ter than Auto mode in the initial stage. However,
since practice is insufficient, the error by instruction
error has arisen. Performance hardly changed about
each teaching method.

In having no instruction (Auto), the number of
rules is stabilized about 600. However, in each teach-
ing method, when man teaches, directions are limited

Auto Active Passive Offline

o
o

StepBFood
w s w
o o o

N
8
=
>
—
=z

,_.
o
==

o

H e N0 MUVUONDO A ¥EOmGO O
3 ¢ 2
Trials
Figure 5 Step to Food
Auto Active
Passive Offline

[02)
o
o

’/,—/

o
o
o

o

N
o O
o

PopulzdnSxze
N

“
bl el

o

AR SRR I A A SO 2

Trials

Figure 6 Population Size

and the number of rules become about 200. When
teaching by the Active Teaching method, the number
of rules is increasing to about 400. This is a very in-
teresting result. In order to teach by judgment of an
given occasion in Active, it is thought that the way
of instruction is not fixed and the number of rules
increases. Since the contents of the rules were unver-
ifiable this time, it is necessary to analyze in detail
from now on.

Secondary Task Effectiveness

The experiment result in the sub task which solves
the addition problem of 2 figures is shown below. Fig.7
shows the number of answers. And, Fig.8 shows the
number of incorrect answers. The number of problems
is hardly solved in Passive Teaching. Since cognitive
load is high, it is shown that time to perform sec-
ondary task was hardly able to be taken. Since the
timing which teaches in off-line teaching was decided,
it could concentrate on each task and many problems
have solved. It can be said that many problems have
solved similarly in active teaching.

When we investigated the number of incorrect an-
swers, it turns out that the problem of two questions
is mistaken among 76 questions on an average in off-
line. Although speed increases by solving a problem
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Figure 8 The number of Incorrect Answers

continuously, it turns out that a mistake also increases.

Usability

Based on evaluation of usability, seven steps of the
questionnaire survey was conducted about Effective-
ness, Efficiency, and Satisfaction after the experiment,
respectively. Fig.9 shows the questionnaire of usabil-
ity.

In all items, evaluation of Active was good and
there was statistically significant (p < 0.05) in Effi-
ciency.

6 Conclusion

We proposed a Active Teaching method regarding
for teacher’s cognitive load when a teacher instruct a
mobile robot to perform a simulation task. We evalu-
ated the efficiency of this method by the primary task
in the multi-steps simulation environment and the sec-
ondary task involving human cognitive load. The pro-
posed method had low cognitive load, and was effec-
tive in efficiency.
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