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Abstract

We have proposed a fast learning method that enables
a mobile robot to acquires autonomous behaviors from
interaction between human and robot. In this research
we develop a behavior learning method ICS (Interactive
Classifier System) using interactive evolutionary com-
putation considering an operator’s teaching cost. As a
result, a mobile robot is able to quickly learn rules by
directly teaching from an operator. ICS is a novel evo-
lutionary robotics approach using classifier system. In
this paper, we investigate teacher’s physical and mental
load and proposed a teaching method based on timing
of instruction using ICS.

1 Introduction

Under the situation that it’s difficult to prepare the
knowledge for action, the autonomous robot requires the
ability to accomplish tasks in the environment where
contents human activities. The situation, for example,
may be an dynamic environment or unexpected interac-
tion from human. Therefore, the study for acquisition
of autonomous behavior and adaptation to various en-
vironments become necessary.

Recently, reinforcement learning and evolutionary
computation technique were used as the framework of
learning and adaptation. Moreover, the research that
enables a robot get a controller autonomously has at-
tracted attention. When making interaction dynamics
with robot’s embodiment and environment reflect in
construction of a controller, one of the purposes of these
techniques is eliminating the unsuitable and unnecessary
bias by the designer. Therefore, in the former, it has
been made usual to learn by trial and error to an agent,
without putting in prior knowledge in the framework of
reinforcement learning. However, the execution speed
becomes a problem in applying to a real environment.

Then, some researches of the approach using inter-
action with the human who exists in environment has
been carried out. Particularly for the robots that do not
have a priori knowledge or commit trial and error in the
initial stage, human instruction is the very effective ac-
quisition technique of autonomous behavior. However,
in a certain level of autonomous robot, it is not neces-
sary to follow instruction from human all the time. In
the stage which does not need instruction, robot should
demonstrate its autonomy based on the instruction rules
stored by interaction with human without putting a bur-
den on human. Therefore, we need to the technique of
establishing a robot’s autonomy from through interac-
tion between human and a robot is required.

Asoh et al. [1] proposed the framework that the map
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information of the unknown environment is built by a
mobile robot, called Jijo-2 which performs a communi-
cation by voice conversation with human. However, it
doesn’t get the behavior of the robot by the interaction
through human and a robot. Ishiguro et al. [2] built the
state space of the mobile robot by reinforcement learn-
ing. However, it is learning by using as a sample action
that the introduction human taught. After that, a robot
only builds an internal state and there is no interaction
with human. Horiguchi et al. [4] used the idea of the
mutual leadership pattern interaction as the design of
the interaction of the robot with the human and real-
ized the cooperation behavior of the automation process
of a mobile robot and human operations by using power
feedback. However, the result of learning didn’t reflected
on the behavior acquisition of the robot. Inamura et
al. [5] indicate acquirement behavior of a robot using
Bayesian Network based on a dialog with a user. It is
different from our technique to get behavior gradually
by the evolutionary computation technique.

Our purpose is realizing a robot’s autonomy by re-
ceiving the instruction information as a suitable act from
human, and gaining act rules evolutionally with the
state recognition which can solve a task. We call such a
framework Interactive Evolutionary Robotics (IER).

In this paper, we propose some method about a
teacher’s load and timing of teaching which is key point
in the framework of TER.

2 Interactive Teaching

2.1 Teacher’s Load

Generally, in interactive evolutionary learning, the more
it is taught, the better the performance is. However,
human labor is not unlimited. It is clear that it is trade-
off like it is better as instruction cost lowers. Human’s
labor has a limit in cooperating with a machine without
tiredness, carrying out comparison evaluation of many
individuals (or rules) for every generation, and inputting
an evaluation value. This has been a serious practical
problem.

Moreover, as the second problem, the number of in-
dividuals and the number of search generations must be
lessened as compared with the usual EC search in or-
der to reduce physical and mental load in case human
evaluates individuals. It makes convergence worse.

In this research, in order to measure a teacher’s load
simply, it divides into mental load and physical load.
We consider the timing of teaching as mental load and
the number of times of teaching as physical load respec-
tively. It is necessary to solve the load problem for uti-
lization of interactive evolutionary learning. There are
four measures in respect to that problem. It is 1)the
design of the improvement of the input interface to a



computer, 2)the improvement of the presentation inter-
face on a computer, 3)speedup of EC convergence, and
4)the fusion method with the usual EC which is not in-
teractive learning.

In this research, we consider the following things as
instruction. First, direct operation of the robot by input
equipment is performed. Next, a rule is automatically
generated from the operation and the environment infor-
mation at that time. In this framework, it is necessary
to perform neither comparison evaluation of many indi-
viduals, nor the input of an evaluation value like the con-
ventional interactive evolutionary learning. Thereby, it
is expected physical and mental load is reduced sharply.
These are considered to be the improvement of the in-
put interface for a computer, and the improvement of the
presentation interface from a computer in the framework
of Interactive Evolutionary Computation.

Moreover, we will consider the case where interactive
learning is applied to real robot environment. When a
teacher directs by operating a robot intuitively from in-
put equipment (teaching), a rule is created automati-
cally, and a robot learns autonomously when there are
no directions. We consider that this load problem is re-
duced by this method in the point that a system learns
autonomously, the point that a rule is automatically cre-
ated by human’s intuitive instruction, and the point that
additional study can be performed anytime.

2.2 Timing of Teaching

We think that the timing of teaching is greatly con-
cerned with the above-mentioned teacher’s load. How-
ever, since it depends on a system side for the timing
which instruction performs, in order to teach in accor-
dance with the timing, human has to wait. Not to men-
tion the experiment in a simulation, a teacher’s load
increases further in the real environmental learning that
needs more time for an experiment.

Compared with the above-mentioned general instruc-
tion study, we aim at teaching without recognizing that
a teacher is teaching in IER. That is, a system will
learn by gaining operation of a teacher as instruction
information automatically only by a teacher operating
a robot and performing a task. This means that it leads
to reduction of an teacher’s load. We investigate the
effect by the timing of instruction, in order to realize
such instruction. The timing of the conventional in-
struction shall be divided into the timing of following
three instruction in this research.

e pre-teaching
e passive teaching

e anytime teaching

pre-teaching

Exploration in the framework of interactive evolution-
ary robotics learns from instruction information. Pre-
teaching is the method of performing exploration by in-
struction at Teaching Mode beforehand, and performing
exploitation at Autonomous Behavior Mode.

passive teaching

We define passive teaching method as the method of di-
recting teaching at the time of the demand of a system
to a user. Mishima and Asada el al. have improved that
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the efficiency of learning gets worse by passive teach-
ing for a gap (Cross Perceptual Aliasing) of the envi-
ronmental recognition produced between a teacher and
a learner. In study efficiency, passive teaching has lit-
tle futility of teaching and is considered to be a good
method. However, the teacher has to be supervising un-
til a system requires action. Moreover, since it does not
know when the timing comes, it is thought that a mental
load becomes large to the number of instruction.

anytime teaching

The problem how to treat the trade-off between explo-
ration and exploitation is in one of the important topics
in reinforcement learning. In order to obtain many re-
wards, you have to choose the optimal action preferen-
tially under the present value function. In this case, it
is said that the present knowledge about action value is
exploit(ed). However, the optimal policy based on the
present value function is not necessarily really optimal
policy. In order to discover a better policy, it is neces-
sary to raise the accuracy of the present value function.
Therefore, each action needs to be tried several times.
Moreover, in a dynamic environment, in order to acquire
the knowledge which is adapted for new environment, it
is necessary to also try the action that was not good
before. It is referred to as exploring environment to try
new action, in order to find a better policy. Since we
cannot perform exploitation and exploration simultane-
ously, let both balance be a problem.

On the other hand, it is possible that a teacher gives
instructs to a robot at favorite timing. In this research,
this is called anytime teaching method. Seeing a robot
perform autonomous action, a teacher operates a robot
to favorite timing and makes a task. Thereby, teacher
can instruct to a robot being unconscious of teaching,
without worrying about whether he teaches by seeing
a robot’s action. Thereby, a teacher can teach with-
out worrying about whether being conscious of teaching,
whether it teaches, or not when he/she saw a learner’s
all actions. However, it is difficult to include such spec-
ification in a system side.

3 Teaching based on Interactive Evolution-
ary Robotics

3.1 Interactive Evolutionary Robotics

Interactive Evolutionary Robotics (IER) is a framework
aiming at performing efficient real environmental robot
study using the evaluation capability of (Interactive
Evolutionary Computation(IEC)). IEC is the method
of including evaluation of human in the evaluation sys-
tem of a system directly, and searching evolutionally.
Moreover, IER is an approach which designs a robot in-
teractively using the evolutional calculation techniques,
such as a genetic algorithm, genetic programming, and
an evolution strategy. The framework figure of IER is
shown in Fig.1.

In general Evolutionary Robotics, it is considered
as the object of a design of a robot’s controller. ER
is designing it through evolution process by selection
pressure under an evaluation function rather than de-
termines the detailed specification in top-down. In IER,
evolution is promoted by gaining a rule by interaction
with a designer further. For this reason, while expecting
the high emergent of ER, it is possible to also expect the
pliability and sensitivity of IEC in a complicated prob-
lem.
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Figure 1: Interactive Evolutionary Robotics

We think that the method in this framework is ef-
fective in the learning of an initial stage that must be
performed by trial and error. Moreover, we also expect
the effect of obtaining a solution to the partial solution
that cannot be solved only by human, through interac-
tion between human and robot. Furthermore, since it is
not dependent on learning algorithm, this technique is
widely applicable to general evolution robotics.

3.2 Interactive Classifier System

By including the interactive function of IEC in (Learn-
ing Classifier System (LCS), ICS is the robot study
model that can also perform study by instruction in
addition to autonomous study. XCS[7] which Wilson
proposed is used for LCS that is study algorithm. XCS
adds the parameter that is what improved ZCS|[8] and is
called accuracy . Although the classifier was generalized
by including #(don’t care symbol) in a conditional part,
the classifier system or ZCS of Holland were not able to
perform it effectively.

This originates in not having a mechanism for the
classifier system itself advancing generalization appro-
priately, and the phenomenon in which the performance
of a system gets worse by the classifier generalized too
much (overgeneral) has been reported[9]. In XCS, in
order to control the classifier generalized especially too
much, not only the conventional intensity but accuracy
has determined the validity of a classifier. This accu-
racy is calculated by the error of the reward received
as a result of performing a classifier, and its prediction
value, and it is reported that a rule can be generalized
appropriately by this, without becoming common too
much[7]. The framework figure of the built system is
shown in Fig.2.

ICS consists of a rule generation component (RGC),
a sensor processing component (SPC), a display compo-
nent (DC) and a reinforcement component (RC). All of
them are developed on Linux. It is described by the C
language and GTK+. Each module is explained below.

0 RGCUO Rule Generation Component creates the rule
by instruction. A teacher operates it using input
equipment, looking at the information displayed
on an interface in a robot. A sensor processing part
(SPC) receives the operation history of a there,
and the sensor information of the robot at that
time, RGC creates a rule newly from it, and it
adds to a rule list. The creation procedure of a rule
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Figure 2: Overview of Interactive Classifier System

was improved so that a rule could be created from
instruction information (the action to which oper-
ator operated the robot) on the basis of XCS|[7].

1. ICS receives a robot’s sensor information X
and instruction information a; from SPC.

2. Some classifiers that matched X is moved
from a group [P] to a match set [M]. ICS
turns regularly the Prediction value of classi-
fier which supports each act a; in [M] with a
Fitness value, and creates P(a;). The value of
P(a;) is put on Prediction Array, and the act
of classifier chosen by P(a;) is chosen by act
selection methods. Act selection methods are
performed by deterministic selection method
or roulette wheel selection method.

3. If a; # a: to compare act a; chosen by act se-
lection methods and act a+ obtained by teach-
ing, the action part of the rule which has a;
in an action part in [M] will be rewritten to
at. A change will not be made if a; = a;.

4. The action set [A] which consists of classifiers
in [M] which supports selected act a; is cre-
ated. When act a; or a; is sent to an effect
machine, and in case of a:, reward T¢eqcn iS
given immediately. When there is no input of
at, remuneration 7;mm, is returned from envi-
ronment.

0 RCO Reinforcement Component is a reinforcement
learning part in classifier system. It learns by up-
dating the parameter of classifiers chosen last time
step. When there is no operation of a teacher, a
robot can act autonomously from the rule created
by then.

0O DCO Display Component takes charge of the display
of the data processed by SPC. GTK+ is used for
development of an interface. The developed inter-
face is shown in Fig.3.

0 SPC0O Sensor Processing Component performs pro-
cessing of a robot’s various sensors and processing
of teaching information. It is sent to DC and RGC
and the processed data is displayed and ICS cre-
ates classifiers from them.
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Figure 3: User Interface

At first, a human operates robots with a joystick
by referring to sensor information displayed on GUI in-
terface, and the DC processes the information. Next,
the SPC gets interaction and sensor information. The
RGC make new rules from them and adds them into a
rule list. When nothing is input from the operator, a
mobile robot executes autonomous behaviors from in-
teraction. Finally, the RC reinforces the classifiers by
updating their parameters in the actions that were pre-
viously executed.

ICS differs from IEC in that operators do not have
to evaluate individuals each time. The operator can
always operate a mobile robot directly, and such direct
operation can take place of the fitness evaluations of
each individual in IEC. Therefore the operator can do
teaching with less load, and can always do concentrative
additional learning for sub-tasks difficult to achieve.

3.3 Procedure of learning

ICS performs two modes: a teaching mode and an au-
tonomous behavior mode by turns. The procedures of
the two modes are shown in the following.

r Teaching mode

~

Step 1: Prepare the robot’s state space.

Step 2: It teaches depending on any of the proce-
dure of the timing of three kinds of instruc-
tion they are.

Step 3: A rule is created by an operator’s direc-
tions information and environmental informa-
tion at the time.

N
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Figure 4: Teaching Mode and Autonomous Mode

Teaching mode

Step 4: If there is no rule belonging to the same
cluster, it will add as a rule newly.

Step 5: If there is a rule belonging to the same
cluster, a strength value will be updated by
reward.

r Autonomous behavior mode ~

Step 1: The robot behaves by conforming to
stored rules in Rule List.

Step 2: If the average of the number of the time
steps from GA of just before in a match set
exceeds a threshold, GA will be performed to
the match set.

- J

Fig.4 shows the overview of a teaching mode and an
autonomous behavior mode.

3.4 Procedure of the timing of teaching

The timing of teaching has three timing described in
Chapter 2.2. Each procedure is shown below. Each is
performed in Step2: in teaching mode.

pre-teaching

1. A teacher directs action to state space.

passive teaching

1. Act A will be performed if there is ef-

fective action A to state space.

. If there are no directions, directions
will be requested to a teacher.




R
Q|Q|F¢ - |QIQ|F o|QlF QlQlc olQ|c olQ|F Table 1: Experimental Parameters
olo]o]"| |olo]o olq|o olo[q Qlelo QlQ|Q
00,0 Q.0 S 220 00,0 Q.0 | Parameters | Value |
number of problems in one experi- 5000
QlolF Qlole QlolF ololF olole Qlole ¢
ololo ololo ololo ololo ololo ololo men _
qlelo ololo olelo Qlola qlola olqlo number of experiments 10
maximum size of the population 800
olole ololF olola ololF olols ololF number of teaching 5, 10, 20, 50
ololQ ololo Qlelo olQlo Qlolo olQ|o probability to do crossover 0.8
Qlelo ojol0 oQl0 o01Q olRQ QejQ probability of mutating one bit 0.04
* : Animat
F,G : Food
0,Q : Obstacle

Figure 5: Woods2 Environment

anytime teaching

1. To state space, if there are directions
from a teacher, it will perform.

2. If there are no directions, a robot will
perform exploration autonomously.

4 Experiment

4.1 Teaching effects and Teacher’s Load

We test a preliminary experiment in order to
evaluate the effectiveness our ICS. This is a very
simple domain. We use Woods2 environment
which one of Wood-like environments[7] as an
environment in the experience. It used as a test-
bed in several works based on classifier system.
Fig.5 shows Woods2 environment. This envi-
ronment is markovian multi-step problem. The
left and right edges of Woods2 are connected,
as are the top and bottom. Woods2 has two
kind of ”food” and two kind of ”rocks”. F and
G are the two kind of food, with sensor codes
110 and 111, respectively. O and Q are the two
kind of objects, with sensor codes 010 and 011,
respectively. Blanks have sensor code 000. The
system, here regarded as an animat or artifi-
cial animal, is represented by *. To sense its
environment, * is capable of detecting the sen-
sor codes of objects occupying the eight nearest
cells. The encoding of a classifier is as follows.
A classifier, for example, is the 24-bit string
000000000000000010010110. The left-hand three
bits are always those due to the object occupy-
ing the cell directly north of *, with the remain-
der corresponding to cells proceeding clockwise
around it. The animat’s available actions consist
of the eight one-step moves into adjacent cells,
with the move directions similarly coded from 0
for north clockwise to 7 for northwest. If a cell is
blank, * simply moves there. If the cell contains
food, * moves to the cell, ”eats” the food, and
receives a reward (7imm = 1000).

‘We compare our teaching method with No-
teaching method by four settings of the num-
ber of teaching to investigate relationships with
teaching effect and load. The teaching operates
by timing as same as pre-teaching. We try 50
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teachings that have about 3 steps by one trial.
A setup of the number of instruction prepared
four setup with 5, 10, 20, and 50 instruction to
one problem. Action for about 3 steps is built by
one trial by instruction. When ten trial is per-
formed, the classifier of about 30 will be created.
The experiment is asking for 10 trial deed and
its average about each setup. The parameter of
an experiment is shown in Table 1.

4.2 Experimental Results

In this work, we investigated performance (in av-
erage steps to food) and system error (average
absolute difference between the system predic-
tion for the chosen action and P which is the sum
total of maximum system prediction and the cur-
rent reward in Fig.2). Fig.6 shows the steps to
the foods. And, Fig.7 shows system error.

Especially in early stage of learning, ICS out-
performed No-teaching system. Our teaching
method is twice as good as Non-Teaching method
in early stage(50 trials) in the steps to foods.
Moreover, there is no effect on system error.
ICS improves the early time learning due to have
been given the human-robot interaction in ad-
vance. Although efficiency becomes good about
the load of instruction so that the number of in-
struction goes up, it turns out that it is difficult
to look for an appropriate point.

In order to investigate how much taught rule
is spread and used effectively for a group, the
rate in which the rule taught into the group or
its posterity is contained was investigated for ev-
ery number of problems. Here, the taught rule
expresses the rule made from instruction infor-
mation, and all the children made by Genetic
Algorithms considering it as parents. The result
is shown in Fig.8. In order to teach by setup of
10 beforehand, the rate is not filled in the stage
to begin to 1%. However, if 500 problems are
exceeded, 80% of a group will be occupied. The
rule to which about 100% was taught in the stage
beyond 1000 problems occupies. Signs that the
taught rule is used very well and spreads in the
group are known.

5 Conclusion

‘We proposed a fast learning method based on
ICS which enables a mobile robot to acquire au-
tonomous behavior from interaction between hu-
man and robot. We evaluated the efficiency of
this work by the experiments in the multi-steps
simulation environment.
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ICS has two major characteristics. First, the
ICS generate initial individuals by teaching from
human-robot interaction. We can perform ini-
tial learning efficiently in this way. Second, a
user can add new rules to operate a robot di-
rectly at any time during the course of teaching
in ICS. Therefore the user can perform teaching
without much load, and can always do concentra-
tive incremental learning for sub-tasks difficult
to achieve.

About the timing of teaching, it is under con-
struction at this time. In the near future, we will
make experiments on the three teaching timing
using real robot such as AIBO to inspect the ef-
fect of teaching and user’s load.
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