Monitoring Partial Updates
in Web Pages using Relational Leaning

Seiji YAMADA and Yuki NAKAI

CISS, IGSSE, Tokyo Institute of Technology
4259 Nagatsuta, Midori, Yokohama, 226-8502, Japan
yamada@ymd.dis.titech.ac. jp

Abstract. This paper describes an automatic monitoring system that
constantly checks partial updates in Web pages and notifies them to
a user. While one of the most important advantages of the WWW is
frequent updates of Web pages, we need to constantly check them out and
this task may take much cognitive load. Unfortunately applications to
automatically check such updates can not deal with partial updates like
updates in a particular cell of a table in a Web page. Hence we developed
a automatic monitoring system that checks such partial updates. A user
can give a system regions in which he/she wants to know the updates in
a Web page as training examples, and it is able to learn rules to identify
the partial updates by relational learning. We implemented the system
and some executed examples were presented.

1 Introduction

We currently obtain various information from the WWW and utilize them. While
one of the most important advantages of the WWW is its constant updates of
Web pages, we needs to frequently check the updates for acquiring the latest
information and this task forces much cognitive load on us. Thus a number
of applications to automatically check and notify updates of Web pages have
been developed|[1][2]. Unfortunately almost all of them notify updates to a user
whenever any part of a Web page is updated, and most of such updates may not
useful to him/her.

Consider a weather report Web page and a user who has a plan to go to
a picnic on the next Sunday and is interested in the weather. He/she needs to
frequently check the next Sunday’s weather in the Web page. If a user employs
a Web update checking application, it notifies him/her all of updates includ-
ing other day’s weather changes except Sunday thought such notifications are
meaningless. Thus partial update is defined as an update of a region in which
a user is interested, not of any part of a Web page. We consider this partial
update monitoring is widely necessary in a lot of fields like stock market pages,
the exchange rate pages and so on.

We developed an automatic monitoring system PUM (Partial Update Mon-
itoring) that constantly checks partial updates in Web pages and notifies them
to a user.



Updated
Web page

Identification of
amonitor region,

Fail

Unnecessay

3-(b)-i
Notification

Success

Information of
monitor region

Rl rules UCrules
- _ - 4. Evdluate

Necessary

| | rules
s Ly -
2-(b) Rule generation 2-(b) Rule generation
Indicate:

Relational learning Relational learning update 3-(b)-i-A.
% Indicate update
[ | 3B
Traning examples Training exmaples Good \ Evaluate update

region indentification update check

Evauate update\ -

a)
o Last Nogood‘
[ -~ Updated L Give .
2-(a) [ ] e monitor region
Genarating 196 nooi 00| i)ag — | =
training examples %;-\/

1.0Obtaining
amonitor
region

B

Fig. 1. System overview.

2 PUM: partial update monitoring in a Web page

2.1 System overview

PUM is a system that identifies a region indicated by a user in a Web page, checks
partial updates in the region and notifies a user the updates which he/she wants
to know. Fig.1 shows overview of PUM , where a dotted line indicates interaction
between a user and PUM .

Fig.1 also stands for the procedure of PUM . First of all, PUM obtains a
monitor region from a user. A user indicates a region in which he/she wants
to know the update by mouse highlight operation on interface of PUM (Fig.2).
Next PUM extracts training examples for both of RI(region identification) and
UC(update check) from a region indicated by a user.

Then a relational learning system automatically acquires two kinds of rules
for region identification and update check. PUM utilizes RIPPERJ[3] as a re-
lational learning system. RIPPER acquires rules to classify examples into two
classes, and the learned rule is described as with symbolic representation.



=1olx]

|t(§) \splay(\_f) Help(H?
D E| =R 2] 7 |5 B 5 e b b P62 A% & Fr i Br

= = @ @ H URL D¥Program Filss¥Microsoft Visual Studio¥MyProjects¥Pochid_ene lish¥PochiData¥10emhtm|

[ Title [ URL [ Last Check [ Update | -]
o& hittp://quote yahoo co.jps/ matu 2002147 11:40 Teach!:3
DO BHF BILLITON hittp://au finance yahoo com/mnyI7e= A 2002/1/7 1133 J
O EHP BILLITON - LastTrade hittpe// au finance yahoo.com/mmITe= A% 2002/1/7 1133
D. BHF BILLITOM - Volume hittp://au finance yahoo com/mnyI7e=Ax 2002171220 Teach!:1
httpe S srh noaagov/oundee i-bin/get_afp... 2002417 1234 LI
Rl AN e b Location [10/27(5a® [10/28(5un?10/28¢Mon? 10/30(TueY10/310Ned) 1171 CThw [11/2(Fr | =
. [ta. [ data = = : . = »
s 8 11w ek |l @ W a e alw e w ¥
a 1 8 13 - . . . -
T 4 6 13 et || [rememecey[ 13 [18 8 [18 [ 8 [B [ 9 [20 [ 6 [19 [8 [168 [5 [1a
8 7 7 12 o Rain probability () - 40 20 20 30 20 30
s | Techin | gul el e e wl | al # la al
98 Temerstwecey | 10 [ 20 [ 6 [ 18 [ 8 J20 [ 9 [20 [ 9 [19 [7 [168[5 [18
g 3 7 3 ‘"W
Ty 6 e | menmsiveon] 30 20 a0 30 20 a0
B 1 7 0 font™ Gunma <____I Q , {.._I ,‘ ‘(..._I ,‘ ,‘I & <--I /‘
FREREREE rempersteeccy| 12 [ 20 [ 10 [ 19 [ 9 [eo [ 9 Joeo [10o [19 [7 [168 ][5 [17
EI L Fain prebabiity ) ——— 30 20 30 30 20 30
g 4 708 20 . - = : T 6
7as s e | samems |G M6 dn Wl Wl at e Wla al ¥
g 2 T2 e : ’ i : : J
remparstecey | 13 [ 21 [ 10 [ 19 [ 10 [ 20 [0 J20 [ 11 [ [ 8 [17[7 [18
Rain prabability (K) - 40 20 20 30 20 30
[ . [T | = I U e T ok 1o T o 1 b Lok 1o e 1 ok | =
i .l 2l |;l_I

ek | | N

Fig. 2. Interface of PUM .

After such rules were generated, PUM becomes able to identify partial an
update and determine whether it is one which a user wants to know or not by
using two kinds of rules. If PUM decides an update is useful to a user, it notifies
the update to a user. Otherwise PUM indicates the updated Web page to a user
and obtains his/her evaluation. PUM is implemented using Visual C++ and
Ruby on Windows2000.

Fig.2 shows interface of PUM . The window consists of three sub-windows: a
Web browser window, an URL window and a training example window. A Web
browser window (lower right in Fig.2) shows a Web page in the same way to
Web browser and a user can easily indicate a region by highlighting it using a
mouse. An URL window(upper in Fig.2) stand for URLs of updated pages. A
training example window(lower left in Fig.2) indicates a table of attribute and
value of stored training examples.

2.2 Negative examples for region identification

Since relational learning is a kind of inductive learning, negative examples play a
important role to avoid over-generalization. Thus PUM automatically generates
negative example for region identification to improve learning efficiency.

We consider neighborhood of an indicated region are near miss examples.
Hence PUM generates negative examples from four regions: left, right, upper
and lower regions to an indicated region.



Table 1. RI rules.

Eval. No.|Class Condition
1 Good|cIndex 7’10/14(Sun)’, rNo 7’7"
Good rNo 7’7, cIndex ~’Sun’.

3 Executed examples

A typically successful example for PUM is on updates in a weather report Web
page shown in Fig.2. This page shows weather report of next seven days in which
a table is scrolled horizontally. In this example, a user wants PUM to notify an
update when rain probability of Tochigi on Sunday (a highlighted cell in Fig.2)
decreases less than 40%. Thus PUM needs to learn RI rules to identify a cell
indicating weather probability of Tochigi on Sunday and UC rules to check the
value of weather probability is less than 40. PUM successfully became able to
extract the correct partial update after several evaluations by a user.

Tablel stands for the number of user’s evaluations and learned RI rules at
that time. A rule consists of “Class” and “Condition”, and if an update sat-
isfies “Condition”, it is classified into the “Class”. A™B in “Condition” means
a condition that B is included in a attribute A. A RI rule learned from the
first evaluation can identify a cell which is in 7th-row and has '10/14(Sun)’ as
a column index. This rule succeeded in identifying a region for four days, how-
ever it failed on fifth day. Because a target region included ’10/21(Sun)’ instead
of ’10/14(Sun)’ by scrolling. Then PUM requires second user’s evaluation and
learned a new rule shown in Tablel. This second rule identifies a correct cell
using more general condition 'Sun’ as a column index, not '10/14(Sun)’.

Additional successful examples were investigated in stock market, CD rank-
ing, exchange rate Web pages and so on.

4 Conclusion

We proposed a monitoring system PUM that constantly checks partial updates
in Web pages and notifies them to a user. A user can give a system regions
which he/she wants to know the updates in a Web page as training examples,
and it can learn rules to detect the partial updates by relational learning. We
implemented our system and some executed examples were presented.

References

1. Web Secretary. (http://homemade.hypermart.net/websec/)

2. Saeyor, S., Ishizuka, M.: WebBeholder: A revolution in tracking and viewing changes
on the web by agent community. In: WebNet 1998. (1998)

3. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth Inter-
national Conference on Machine Learning. (1995) 115-123



