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Abstract

This paper describes a practical framework in which gen-
eration of operators, planning and an execution of a plan are
integrated for a heterogeneous multi-robot system. In our
framework, first we design literals to describe an environ-
ment. Next a teacher directly manipulates real mobile robots
to achieve a task in the environment, and a sequence of the
pairs of sensed data and an executed action is obtained. By
analyzing the sequence, a system is able to automatically
generate an operator by constructing a precondition-list, an
add-list and a delete-list from them. Once the operators are
acquired, a system can apply a complete and sound planner
GraphPlan to generate a plan. The generated plan is executed
by instance-based learning with a Nearest Neighbor method.
This execution of a plan utilizes a sequence of the pairs of
sensed data and an executed action as a set of instances. Thus
a system integrates operator generation, planning and the ex-
ecution of a plan. The feasibility of our framework is veri-
fied through experiments in which two heterogeneous mobile
robots cooperatively achieve a task.

1. Introduction

One of important technologies for bridging between
AI(Artificial Intelligence) and robotics is planning. In the AI
planning, operators describing robot actions are given in ad-
vance, and the automatic generation of an operator sequence
which can transform an initial state to a goal state[3, 6]. An
obtained sequence of operators is called a plan. An environ-
ment in which a robot works is described with predicate cal-
culus, and a problem consisting of an initial state and a goal
state is given. In this context of AI planning, planning is just
to search for a plan, and most of the studies in AI planning
have been done on purpose of developing an efficient search
algorithm. However, planning is essentially a sub-system of
a whole framework in which a robot recognizes an environ-
ment, describes the environment and operators, generates a
sequence of actions and executes it. Though searching for a
plan is significant, automatic generation of operators recently
has been recognized as very important and difficult for a prac-
tical application of planning to robotics. Nevertheless few at-
tempt has been done for generating operators in robotics and
AI[8, 7].

A multi-robot system is also an important issue in the view
of engineering because many practical robotics systems are
consisting multiple robots. However most of the investigated

multi-robot systems are homogeneous in the sense that all
the robots have identical sensors and actuators. Though such
systems are robust to breakdown of some robots, they have
no adaptation that individual robot plays a different role de-
pending on its ability. In a real environment, a multi-robot
system inevitably becomes heterogeneous since no physical
robots are completely identical and they are often different in
the function. Thus we need a framework for a heterogeneous
multi-robot system.

Hence we propose a practical framework in which gener-
ation of operators, planning and the execution of a plan are
integrated for a heterogeneous multi-robot system. In our
framework, first we design literals to describe a environment.
Next we actually manipulate a real mobile robot to achieve a
task in the environment, and a sequence of the pairs of sensed
data and an executed action is obtained. By analyzing the
sequence, a system is able to automatically generate an op-
erator, and apply an efficient planner to generate a plan. The
generated plan is executed by instance-based fashion. As a re-
sult, a system integrates operator generation, planning and the
execution of plans. We verify the feasibility of our framework
through experiments in which two different types of mobile
robots cooperatively achieve a task.

Wang proposed a method to generate and refine opera-
tors using a machine learning approach[8]. A version space
method and a large number of training examples were uti-
lized for operator generation. The experimental results sup-
ported that the approach is promising. Unfortunately the en-
vironment was symbolic, and no real environment in which
a physical robot actually works was dealt with. In contrast
with the study, we apply our framework to a real and physical
environment using real mobile robots.

Schmill, at. el [7] studied learning for classifying sensed
data into action classes using an efficient inductive learning
algorithm C4.5. They made experiments in a real environ-
ment using a physical mobile robot. However they did not
propose a concrete method to generate an operator in their
research. Our framework not only deals with a real environ-
ment but develops a method to generate operators.

2. System overview

We propose a framework in which a mobile robot is able to
learn necessary operators by user’s simple and direct teaching
to do planning and execute a plan. Fig. 1 shows the overview
of our system. It has three modes: a learning mode, a test
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mode and a planning mode, and a user(teacher) can change
the modes anytime. Thus a user can teach a robot in a learn-
ing mode as monitoring its execution in a test mode. Also a
user can teach a robot immediately when a robot fails plan-
ning in a planning mode. A user and a robot can cooper-
ate interactively to generate and execute a plan. User-frendly
GUI(Fig. 2) is provided for a user to change modes and mon-
itor various information on an operator and sensed data.

• A learning mode: A user directly teaches a robot, and a
robot can learn executable operators by the teaching. In
the teaching, a user directly manipulates a mobile robot
through GUI to perform a given task like remote con-
trol. Furthermore a system is able to delete and teach
again an operator which failed to be executed in a test
mode.

• A test mode: A user checks whether a generated opera-
tor in a learning mode can be executable or not.

• A planning mode: Using generated operators, a given
initial state and goal state, a system generates a plan.

3. Environment model, operator and planning

3.1. Environment model

In our system, an environment is described a conjunction
of literals obtained from sensed data. Thus this set of liter-

als is called an environment model. For simplicity, we use
no variable for describing the literals. These primitive literals
are designed in advance, and an operator is automatically ac-
quired through teaching. For example, ProximityFront,
ProximityRight, LightBack are literals for an environ-
ment model. A snapshot of an environment model is called
a state. A planning problem is described with a pair of an
initial state and a goal state. An initial state means an initial
environment model when a robot starts to work, and a goal
state means a final environment model which a robot should
approach.

3.2. Operator

An operator is basically described with a precondition-list,
an add-list and a delete-list. The precondition-list means a set
of literals which are necessary to execute the operator. The
add-list means a set of literals which become true after the
execution of the operator, and the delete-list stands for literals
are deleted from the state after the operator execution. Thus
an operator application to an environment model transforms a
state. This is a popular description in traditional AI planning
like STRIPS[3, 6].

Additionally we introduce an instance set for executing an
operator using a robot in a real environment. The instance
set consists of pairs of sensed data and an executed action by
teaching. As mentioned later, a Nearest Neighbor method is
utilized to execute an operator, thus an instance set is neces-
sary. Examples of an operator and an instance set are shown
in Fig. 3.

3.3. Planning

As mentioned before, planning is generation of an opera-
tor sequence to transform an initial state to a goal state. Since
development of an efficient planning algorithm is not a pur-
pose of this study, we employ Graphplan[1], one of complete
and the most efficient planners. Graphplan describes a plan
as a directed graph having causality among operators, and the
planning is dealt with as manipulation of the graph. Using
Graphplan, a system is able to generate an adequate plan ef-
ficiently.

We explained the overview of our framework above. In the
following sections, we describe how to generate and execute
an operator in more detail.

4. Automatic generation of operators

Fig. 3 shows learning of operators by direct teaching by
a human teacher. He/she teaches a mobile robot by directly
manipulating it like remote control. Using GUI(Fig. 2), a
teacher can easily control a mobile robot, and monitors the
behavior, sensed data and literals.
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Figure 3 An operator and the learning

4.1. Checking literals

Since GUI shows a current state, a teacher can recognize
literals which are true in an environment through it. However,
checking whether a literal is true or false from sensed data
is difficult because we hardly design a stable and accurate
function to classify the literal’s value with sensed data.

Thus we obtain instances consisting of sensed data and
literals’ values, and utilize a 1-Nearest Neighbor method[2]
for determining literal value. Also CNN(Condensed Near-
est Neighbor rule)[5] and RNN(Reduced Nearest Neighbor
rule)[4] are applied to reduce instances. Furthermore signif-
icant attributes are given to a system as background knowl-
edge. This instance-based approach is experimentally found
better than designing a classification function.

4.2. Generating an operator

At the beginning of teaching, the state is stored as a teach-
ing start state. A teacher selects next action on a current state,
tell it to a robot, and the robot executes it in a real environ-

ment. This direct teaching is repeated until a teacher stops
it. A teacher monitors literals and stops teaching when an ex-
ecution of a single operator finishes. When a teacher stops
teaching, the state is stored as a teaching finish state. The
teaching start state and the teaching finish state are inputs for
an operator generation procedure.

During teaching, a robot constantly stores the pairs of
sensed data and an executed action as an instance set for
instance-based operator execution. These pairs are utilized
to execute the learned operator when a plan including it is
executed.

An operator is automatically generated using the follow-
ing procedure in a learning mode. The inputs are a teaching
start state and a teaching finish state, and the output is an op-
erator.

1. A teacher describes a name of an operator.

2. A system generates a precondition-list including all the
literals in a teaching start state.

3. A user teaches a robot by directly operating it step by
step through GUI. During this teaching, a system stores
the pairs of sensed data and an executed action as an
instance set for later instance-base operator execution.
At last, a user stops teaching.

4. By comparing a teaching finish state Sf with a
precondition-list P , the add-list and the delete-list are
generated. The add-list is obtained by P ∩ Sf and the
delete-list is generated from P ∩ Sf .

5. An execution of an operator

As well as operator generation has not been studied ac-
tively, a method to execute a plan using a physical robot has
not been developed so much. In our framework, we propose
an instance-based operator execution of a plan. The proce-
dure is described like the following.

1. By observing an environment, an add-list and a delete-
list are checked. If all the literals in the add-list are true
and no literal in the delete-list is true, the execution of
the operator is finish.

2. A robot selects an action using a 1-Nearest Neighbor
method[2] with the operator’s instance set. It compares
current sensed data with data in the instances, and the
most similar instance is determined. The action of the
selected instance is executed by a robot.

3. Go to 1.

A k-Nearest Neighbor method outperforms a 1-Nearest
Neighbor method in the case that a large number of instances
are available. In this instance-based operator execution, a few
instances are obtained in a learning mode because an opera-
tor has a relative small number of instances. Thus, due to the
cost of a k-Nearest Neighbor method for selecting the best k
instances, we employed a 1-Nearest Neighbor method in our
research.
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Figure 6 Heterogeneous multiple robots.

6. Experiments

In this section, we describe experiments for investigating
the feasibility of our framework in a real environment where
heterogeneous mobile robots work.

6.1. Heterogeneous multiple robots

We employ a small mobile robot Khepera(Fig. 4) which is
very popular in AI and robotics researches. Khepera has eight
IR proximity sensors and light sensors at the same positions
as shown in Fig. 5. Khepera can recognize an object only
within 20mm around using an IR proximity sensor, and a far
light using a light sensor.

Two types of Khepera mobile robots(Fig. 6) are used for
experiments. The VK(VisionKhepera) has a color CCD cam-
era (270,000 pixels) and a light on the top like Fig. 6(a). VK
recognizes the direction of a far colored object, however it can
not grasp the object because of no gripper. In contrast with
VK, the GK(GripperKhepera)(Fig. 6(b)) can grip an object
with its gripper, and can not recognize a far colored object
because of no CCD camera. GK has a green cylinder on the
top which can be recognized by VK. Also since VK has a
light, GK can recognize its direction with the light sensors.
In the sense that these mobile robots have different sensors
and actuators, a multi-robot system consisting of them is het-
erogeneous.

Goal (bule region)

VisionKhepera
with a light

GripperKhepera
with a green cylinder

Objext (red cylinder)

Figure 7 Experimental environment.
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Figure 8 Cooperative object gathering.

6.2. Experimental environment

The two robots work in an environment shown in Fig. 7.
The environment is a 72cm×72cm square area surrounded
with white walls. There is a red cylindrical object and a blue
goal region on the wall, which VK can recognize their direc-
tions and GK can not do so. Since the object, the goal region
and GK have different colors, VK is able to distinguish them.
In this environment, even a simple task like moving a red
object to a goal needs cooperation between the two mobile
robots. Hence this environment is valid for investigating our
framework.



6.3. Cooperative task

We verify the validity of our framework with a coopera-
tive task in a heterogeneous multi-robot system. The task is
that two mobile robot move a red object to a blue goal re-
gion. A single robot VK or GK can not achieve this task
because VK can not grasp the object and GK can not find
it. Thus one of solutions to this task is shown in Fig. 8. We
define the following operators for the solution, however the
precondition-list, the add-lists and the delete-lists are learned
automatically. In the following operators, (i)–(j) means the
operator corresponds an action from (i) to (j) in Fig. 8.

• ApproachRed: VK rotates and approaches a red object.
(1)–(2)

• FindGripperKhepera: VK does wall-following around
the red object until GK becomes visible. (2)–(3)

• ApprochVisionKhepera: GK approaches VK by recog-
nizing its light. (3)–(4)

• ApprochBlue: VK approaches the blue goal and rotates
there until it finds the GK. (4)–(5)

• GripObject: GK approaches the red object and picks it
up. (5)–(7)

• ApproachGoal: GK approaches the blue goal by recog-
nizing the light of VK. (7)–(8)

• ReleaseObject: GK puts down the red object in front of
VK. (8)–(9)

The literals are carefully designed by a human designer.
Table 1 shows the name and interpretation of the literals.
We consider the literals are sufficient, even not necessary.
Also actions which the robots can execute are defined. Ac-
tions go left, go straight, go right, turn left, wait, turn right,
back} are defined for VK. For GK, actions {grip object, re-
lease object are defined in addition to the VK’s actions.

To perform the task, we give our system a problem: an
initial state {VKProximityLeft, GKLightFront} and a goal
state {VKProximityBack, VKRedAround, GKLightFront,
GKProximityFront}. This problem means that robots move
an red object to a blue goal region.

6.4. Experimental results

In order to achieve this task, we directly manipulated VK
and GK in a learning mode for generating the operators men-
tioned above, and a system acquired the operators success-
fully. Next a system generated a plan to solve the problem us-
ing the learned operators and Graphplan in a planning mode.
Finally the two mobile robots executed the plan in a real en-
vironment, and the goal state was satisfied.

Fig. 9 shows a generated plan. In this figure, the descrip-
tions of learned operators are indicated. Fig. 10 shows the
trajectories of VK and GK in a real environment. We verified
that they worked based on the plan and successfully achieved
the goal state.

Literal name Interpretation

VKProximityFront An object in the front of VK
GKProximityFront An object in the front of GK
VKProximityBack An object at the back of VK
GKProximityBack An object at the back of GK
VKProximityLeft An object on the left of VK
GKProximityLeft An object on the left of GK
VKProximityRight An object on the right of VK
GKProximityRight An object on the right of GK
VKLightFront A light in the front of VK
GKLightFront A light in the front of GK
VKLightBack A light at the back of VK
GKLightBack A light at the back of GK
VKLightLeft A light on the left of VK
GKLightLeft A light on the left of GK
VKLightRight A light on the right of VK
GKLightRight A light on the right of GK
VKRedAround A red object in the front of VK
GKGrippedObject GK grasps an object.
VKGreenAround A green object in the front of VK
VKBlueAround A blue object in the front of VK

Table 1 Literals used in the experiments.

7. Discussions

7.1. Design and check of literals

In a current system, we need to carefully design suffi-
cient literals for achieving a given task as mentioned in 6.3.
This design of literals becomes very hard for a human de-
signer as a task gets more complex. Though an full-automatic
method for designing literals is difficult, we need to develop
a semi-automatic approach in which a system and a designer
defines sufficient literals interactively. We consider unsuper-
vised learning is applicable to generate candidates of literals.

7.2. Segmentation of operators

The segmentation of operators from a sequence of actions
is done by a human teacher. He/she explicitly divides the
sequence into operators by pointing out a teaching teaching
start and a teaching finish state. However a system should
segment a whole action sequence consisting of necessary op-
erators to achieve a task into adequate sub-sequences. When
tasks to be performed are given, the segmentation is realized
so that the obtained operators can be necessary and sufficient
to achieve all the tasks. Since this segmentation needs com-
binational search, we have a plan to employ an evolutionary
computation approach.

8. Conclusion

We proposed a practical framework in which the genera-
tion of operators, planning and the execution of a plan were
integrated for a heterogeneous multi-robot system. In our
framework, first we designed literals to describe a environ-
ment, and directly manipulated real mobile robots to achieve
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(operator ApproachRed
  (params)
  (precond-list
    (VKProximityLeft)
    (GKLightFront))
  (add-list
    (VKProximityFront)
    (VKRedAround))
  (delete-list
    (VKProximityLeft)))

(VKProximityBack)
(VKGreenAround)
(GKLightFront)
(GKGripObject)

(VKProximityLeft)
(GKLightFront)

(VKProximityFront)
(VKRedAround)
(GKLightFront)

(operator FindGreen
  (params)
  (precond-list
    (VKProximityFront)
    (VKRedAround)
    (GKLightFront))
  (add-list
    (VKProximityRight)
    (VKGreenAround))
  (delete-list
    (VKProximityFront)
    (VKRedAround)))

(VKProximityRight)
(VKGreenAround)
(GKLightFront)

(operator ApproachLight
  (params)
  (precond-list
    (VKProximityRight)
    (VKGreenAround)
    (GKLightFront))
  (add-list
    (VKProximityFront)
    (GKProximityFront))
  (delete-list  ))

(VKProximityFront)
(VKProximityRight)
(VKGreenAround)
(GKLightFront)
(GKProximityFront)

(VKProximityBack)
(VKRedAround)

(VKGreenAround)
(GKLightFront)

(operator ApproachBlue
  (params)
  (precond-list
    (VKProximityFront)
    (VKProximityRight)
    (VKGreenAround)
    (GKLightFront)
    (GKProximityFront))
  (add-list
    (VKProximityBack)
    (VKRedAround))
  (delete-list
    (VKProximityFront)
    (VKProximityRight)
    (GKProximityFront)))

(operator GripObject
  (params)
  (precond-list
    (VKProximityBack)
    (VKRedAround)
    (VKGreenAround)
    (GKLightFront))
  (add-list
    (GKGripObject))
  (delete-list
    (VKRedAround)))

(operator ApproachGoal
  (params)
  (precond-list
    (VKProximityBack)
    (VKGreenAround)
    (GKLightFront)
    (GKGripObject))
  (add-list
    (VKProximityFront)
    (GKProximityFront))
  (delete-list ))

(operator ReleaseObject
  (params)
  (preconds
    (VKProximityFront)
    (VKProximityBack)
    (VKGreenAround)
    (GKLightFront)
    (GKProximityFront)
    (GKGripObject))
  (add-list
    (VKRedAround))
  (delete-list
    (VKProximityFront)
    (VKGreenAround)
    (GKGripObject)))

(VKProximityBack)
(VKRedAround)
(GKLightFront)
(GKProximityFront)

(VKProximityFront)
(VKProximityBack)
(VKGreenAround)
(GKLightFront)
(GKProximityFront)
(GKGripObject)

Initial state

Goal state

Figure 9 Generated plan.

a task in an environment. As a result, the initial state, the
finish state and a sequence of the pairs of sensed data and an
executed action were obtained. Using the two states, a sys-
tem can generate an operator by constructing a precondition-
list, an add-list and a delete-list. Once the operators were
acquired, a system can apply a complete and sound plan-
ner to generate a plan. The generated plan was executed by
instance-based operator execution with a 1-Nearest Neighbor
method using the pair of sensed data and an executed ac-
tion. Thus operator generation, planning and the execution
of a plan were integrated in our framework. The feasibility
of our framework was verified through experiments in which
heterogeneous mobile robots cooperatively achieved a task.

Figure 10 Execution of a plan in a real environment.
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