
Evolutionary Design of Behaviors
for Action-Based Environment Modeling by a Mobile Robot

Seiji Yamada
CISS, IGSSE, Tokyo Institute of Technology

4259 Nagatsuta, Midori, Yokohama 226-8502, JAPAN
yamada@ymd.dis.titech.ac.jp

Abstract

This paper describes an evolutionary way to
acquire behaviors of a mobile robot for rec-
ognizing environments. We have proposed
AEM (Action-based Environment Modeling)
approach for a simple mobile robot to rec-
ognize environments. In AEM, a behavior-
based mobile robot acts in each environments
and action sequences are obtained. The
action sequences are transformed into vec-
tors characterizing the environments, and the
robot identifies the environments with sim-
ilarity between the vectors. The suitable
behaviors like wall-following for AEM have
been designed by a human. However the
design is very difficult for him/her because
the search space is huge and intuitive under-
standing is hard. Thus we propose the evolu-
tionary design of such behaviors using genetic
algorithm and make simulations in which a
robot recognizes the environments with dif-
ferent structures. As results, we find out suit-
able behaviors are learned even for environ-
ments in which human hardly designs them,
and the learned behaviors are more efficient
than hand-coded ones.

1 Introduction

Previous research on an autonomous agent which rec-
ognizes environments have been done primarily in
robotics. The most studies have tried to build a pre-
cise geometric map using a robot with high-sensitive
and global sensors like vision[4]. Since their main aim
is to navigate a robot with accuracy, a precise map is
necessary. However, to recognize environments, such a
strict map may be unnecessary. Actually many natu-
ral agents like animals seem to recognize the environ-

ments only with low-sensitive and local sensors [17]. In
terms of engineering, it is important to build a mobile
robot which can recognize environments only with the
inexpensive sensors.

Thus we have tried to build a mobile robot which rec-
ognizes environments only with low-sensitive and local
sensors. Since such a robot does not know its position
in the environment, it cannot build a global map of
the environment. Hence we proposed approach that a
mobile robot can recognize the environment with ac-
tion sequences . We call this approach AEM (Action-
based Environment Modeling) [19]. In AEM, a mobile
robot is behavior-based and acts using given suitable
behaviors like wall-following in environments. Then
the action sequences executed in each environment are
obtained, and transformed into environment vectors.
A robot identifies the environments by comparing en-
vironment vectors.

Through the research on AEM, we have recognized a
significant problem: where the suitable behaviors come
from? . An easy solution is that a human designs them.
This approach has been done thus far, and have suc-
ceeded in simple domains. However the behavior de-
sign becomes quite difficult for a human designer as the
variety of environments increases. Because a search
space becomes huge, and the intuitive understanding
on suitable behaviors becomes very hard. Hence an
automatic design method like evolutionary way is nec-
essary [6].

In this paper, we propose the evolutionary design
method of such behaviors using GA (Genetic Algo-
rithm) and make experiments for evaluation. For fu-
ture implementation on a real mobile robot, we use a
Khepera simulator in the experiments. From the ex-
perimental results, we found out that our evolutionary
approach is promising to automatically acquire suit-
able behaviors for AEM, and the acquired behaviors
are more efficient than hand-coded ones.

In the similar approach to AEM, several studies have
been done in robotics [12] and artificial life [15]. Nehm-
zow and Smithers studied on recognizing corners in
simple enclosures with a self-organizing network [15].
They used direction-duration pairs, which indicate the
length of walls and shapes of past corners, as an input
vector to a self-organizing network. After learning, the
network becomes able to identify corners. However the
recognized structure is very local. Mataric represented
an environment with automaton in which nodes corre-
spond to landmarks [12]. Though the representation is
more robust than a geometric one, a mobile robot must
segment raw data into landmarks and identify them.
Nakamura et al. utilized a sequence of sonar data in
order to reduce the uncertainties in discriminating the
local structure [14]. Though the sequence consists of
sensor data (not actions), their approach is similar to
AEM. Kato et al. used modified random-walking for
extracting environment structure in statistical way. In
most researches, wall-following has been used as suit-
able behaviors in [12][15][19]. The behaviors were de-
scribed by human designers, and fixed independently
of tasks. Hence they have a significant problem that
the design of the behaviors is very difficult.

There are several studies for applying GP (Genetic
Programming) [11] to learn behaviors of a mobile robot
[18][10][16][8]. Unfortunately, in all the studies, very
few and simple behaviors like obstacle avoidance were
learned. In contrast with them, our aim is to learn
the suitable behaviors to AEM, and the behaviors is
complicated one consisting of several kinds of primitive
behaviors.

Our research is also relevant to automatic generation
of pattern recognition procedure because the environ-
ment is considered pattern. Evolutionary design of
neural networks for pattern recognition was studied
[3]. However they focus on a traditional pattern recog-
nition task, and never deal with the cost for recogni-
tion, which is significant in this research.

2 Task: Action-based Environment
Modeling

In AEM [19], a mobile robot is designed in a behavior-
based approach [2]. The behavior means mapping
from states to actions, and a human designer describes
states, actions and behaviors so that action sequences
can represent environment structure. An AEM proce-
dure consists of two stages: a training phase and a test
phase (Fig.1). In the training phase, training environ-
ments having a class are given to a robot. The class
means a category in which the environment should be

Training
env.

Chain coding
transformation

Action
sequence

A robot acts in
an environment

Environment
vector

(a) Training phase (b) Test phase

Test
env.

Chain coding
transformation

Action
sequence

A robot acts in
an environment

Environment
vector

Comparing with
stored instances

Storing
instances

Figure 1 Overview of AEM

included, and plural environments may be included in
the same class. The mobile robot acts in the environ-
ments using given behaviors, and obtains sequences
of executed actions (called action sequence) for each
of them. The action sequences (lists of symbols) are
transformed into real-valued vectors (called environ-
ment vectors) using a chain coding-like method. The
environment vectors are stored as instances, and a
training phase finishes.

In the test phase, a robot is placed in a test envi-
ronment which is one of training environments. The
robot tries to identify the test environment with one
of training environments, and we call this task envi-
ronment recognition. Note that though a test envi-
ronment is one of training environments, the action
sequence of the test environment may be significantly
different from every sequence of training environments
because of noise in sensing and action. Thus general-
ization is necessary for environment recognition. The
identification is done using 1-Nearest Neighbor method
[5] i.e. the robot selects the most similar instance to
the test environment and considers the class of the in-
stance is that of the test environment. The similarity
is evaluated with Euclidean distance between environ-
ment vectors.

However, in AEM, there is a significant problem:
where the suitable behaviors come from. Since the
suitable behaviors depend on environment structure
which a robot should recognize, they have been de-
scribed by human designers thus far. However the task
is very difficult for them. Because the search space for

32mm

55mm

Figure 2 Khepera

2

0
1

3
4

5

7 6

DC motor

Infrared
proximity sensor

Figure 3 Sensors

a suitable behavior is very huge: the computational
complexity is O(as), where a and s are the number of
actions and states. Thus, we propose the evolutionary
method to automatically acquire the suitable behav-
iors using GA.

3 States, actions and environment
vectors

Using real mobile robots as individuals in GA is not
practical because it is impossible to operate several
tens of real robots over more than one hundred gener-
ations. Thus we use a simulator for acquiring behav-
iors1 , and intend to implement the learned behaviors
on a real mobile robot.

We use a miniature mobile robot KheperaTM (Fig.2)
as a target real robot. It has Motorola 68331 Micro
processor, 256KByte RAM. As shown in Fig.3, it also
has two DC motors as actuators and eight Infra-Red
proximity sensors which measure both distance to ob-
stacles and light strength. Since the sensor data is
imprecise and local, Khepera cannot know its position
in a global map. In the later experiments, the simula-
tor build for Khepera will be used.

We describe a state with ranges of a sensed value. For
reducing the search space of behaviors, we restrict the
number of states and actions. A sensor on Khepera
returns 10 bit (0∼ 1023) value for distance and light
strength, and the value is very noisy and crisp. Thus
we transform the distance value into binary values 0
or 1. The value “0” means an obstacle exists within
3cm from a robot. The value “1” means it does not
exist. Furthermore only three sensors (0, 2 and 5 in
Fig.3) are used for reducing states.

Next, states for light strength are described. The only
4 sensors (0, 2, 5 and 7 in Fig.3) are used. We de-
scribe a state using the sensor with the strongest light
value and binary values which mean a light is “near”

1In this research, on-line evolutionary learning on a sin-
gle real robot like [16] is impossible. Because the actions
need to be continuously executed by an individual.

or “far”. A state in which all of the sensors has al-
most same values is also considered. As a result, the
number of states for light is nine. The total number
of states is 72 (= 23× 9)

We describe the following four actions. In experiments
for our research [19], we found the actions were suffi-
cient for a mobile robot to do simple behaviors like
wall-following. A mobile robot acts in an environment
by executing the actions, and consequently an action-
sequence is obtained.

• A1 : Go 5mm straight on.
• A2 : Turn 30̊ left.
• A3 : Turn 30̊ right.
• A4 : Turn 180̊ left.

The generated action-sequence is transformed into an
environment vector. Let an action-sequence and its
environment vector be [a0, a1, a2,· · ·, an] (ai ∈ {A1 ,
A2 , A3 , A4}, a0 = 0) and V = (v1, v2, · · ·, vm) (m ≥
n) respectively. The vector values of V are determined
by the following rules. They change the vector value
when the direction of movement changes in the similar
way to chain coding[1]. An example of an environment
vector is shown in Fig.4.

• If ai = A1 then vi = vi−1.
• If ai = A2 then vi = vi−1 + 1.
• If ai = A3 then vi = vi−1 − 1.
• If ai = A4 then vi = −vi−1.

4 Applying GA to acquire behaviors

A behavior is mapping from each state to one of ac-
tions. Since we have 72 states and 4 actions, the num-
ber of possible behaviors is 472 = 2.2×1043. We apply
GA [7] to search the suitable behaviors to AEM in such
a huge search space.

4.1 GA procedure and coding

We use a simple GA procedure and parameters ob-
tained experimentally in the followings.

Step1 Initializing population: An initial population
I1, · · · , IN are randomly generated.

Step2 Computing fitness : Compute the fitness f1, · · ·
, fN for each individual I1, · · · , IN .

Step3 If a terminal condition is satisfied, this proce-
dure finishes. A concrete terminal condition will
be defined in §5.

[A1, A1, A3, A3, A3, A1, A1, A1, A2, A2, A2, A1, A1, A1]

An action sequence

Trace of
actions

An environment vector

0

-2

2

2 4 6 8 10 12

V
ec

to
r

va
lu

e

Vector
 dimension

14

i

iv

Figure 4 Transformation into environment vectors

Step4 Selection: Using f1, · · · , fN , select a child
population C from the population.

Step5 Crossover : Select pairs randomly from C on
probability Pcross. Generate two children by ap-
plying a crossover operator to each pair, and ex-
change the children with the pairs in C.

Step6 Mutation: Mutate the individuals in C based
on mutation rate Pmut.

Step7 Go to Step2.

• Population size: 50, Crossover operator : Uniform
crossover.

• Selection method : Elite strategy and tournament
selection (the tournament size = 2).

• Crossover rate Pcross: 0.8, Mutation rate Pmut:
0.05

Since we deal with deterministic action selection, not
probabilistic, the behavior is mapping from a single
state to a single action. Thus we use the coding in
which one of actions {A1 , · · ·, A4} is assigned to each
state, and the genotype is shown in Fig.5.

4.2 Defining a fitness function

Since fitness is a very important for GA, we have to
carefully define the fitness function for AEM. We con-
sider three conditions for suitable behaviors to AEM:
termination of actions, accuracy of recognition and ef-
ficiency of recognition. The fitness functions for each
conditions are defined and then they are integrated.

A4 A1 A3 A2 A4 A2

S S S S S S1 2 3 4 71 72....
Figure 5 A coded behavior

Termination of actions A mobile robot needs to
stop its actions by itself. Otherwise it may act for-
ever in an environment and no action sequence is ob-
tained. Thus the termination of actions is the most
important condition. We use homing for terminat-
ing actions. Thus a robot stops when it returns to
the neighborhood of a start point. Homing makes the
length of an obtained action sequence depend on the
size of an environment. A method to terminate actions
in a fixed length of an action sequence does not have
such advantage. The termination is evaluated with

g =
(No. of E-trials) + (No. of H-trials)

2 × (Total No. of trials)

where E-trials and H-trials means trials in which a
robot escaped from the neighborhood of the start point
and trials in which it succeeded in homing. Its range
is [0, 1], and it returns 1 when a robot succeeded in
homing in all the environments.

Accuracy of recognition Another important crite-
rion is accuracy of identifying test environments. The
accuracy is evaluated by the following formula.

h =
No. of successful test env.

Total No. of test env.

Its range is [0, 1], and h = 0 when g �= 1.

Efficiency of recognition In AEM, a robot needs
to act by operating physical actuators for recogniz-
ing an environment, and the actions significantly cost.
Hence the actions should be as small as possible for
efficiency. We introduce the following evaluation func-
tion.

k = 1 −
∑n

i=1 Si

n ∗ Smax

where Si is the size of an action sequence obtained in
an environment i, Smax is the given limited size of an

Initializing population

Selection, crossover and mutation

Evaluating individuals using simulation

Checking a terminal condition

Computing fitness

Figure 6 Whole procedure

action sequence, and k = 0 when h �= 1. The function
have range (0, 1] and has more value as more efficient2.

We finally integrate three fitness function into f =
g + h + k having range [0, 3], and f is used in this
research. Since the function h (or k) takes 0 when the
value of g (or h) is less than 1, the function f is phased:
the termination of actions is satisfied when 1 ≤ f , the
recognition is completely correct when 2 ≤ f , and the
recognition efficiency is improved when 2 ≤ f < 3.

Fig.6 shows the whole procedure of evolutionary design
developed in this research. It integrates a simple GA
procedure with a Khepera simulation for evaluating
individuals’ fitness.

5 Experiments by simulation

We implemented a system (Fig.6) using a Khepera
simulator [13], and made experiments. The parame-
ters used in all experiments were described in the fol-
lowings: the neighborhood of a start point for homing
was a circle with 100mm radius, and the limited size
of an action sequence was 2000 actions.

In the simulator, the motor has ±10% random noise in
velocity, ±5% one in rotation of robot’s body. Further-
more an Infra-Red proximity sensor has ±10% ran-
dom noise in distance, and ±5% one in light strength.
These noise makes the simulator close to a real envi-
ronment.

2The obstacle avoidance is implicitly evaluated by the
function k because the collision increases the length of an
action sequence.

If a robot cannot return home within the limited size
of an action sequence, the trial of the individual results
in zero fitness. The terminal condition of GA is that
the maximum fitness of the population becomes over
2 or the generation number gets 100. When fitness is
over 2, both termination and accuracy are satisfied.

In all experiments, we gave each of training environ-
ments to a robot once. The robot acted in the en-
vironments, and the environment vectors transformed
from the action sequences were stored as instances.
Next each of the training environment was given to the
robot as a test environment, and the robot identified
each of the test environments with one of the train-
ing environments. The start points and directions was
fixed in bottom center and left.

Note that though the test environments are same to
training environments, the action sequences are differ-
ent because of the random noise in a simulator. Hence
a system has to learn robust behavior against such
noise.

In all the experiments, we had 10 different trials in
initial population, and investigated the averages and
standard deviations of generation number in which GA
stopped.

5.1 Exp-1: Different contours in shape

First we made experiments Exp-1 using environments
with different contours in shape. The experimental
results are shown in Table 1. Four parts ((a)∼ (d) in
Table 1) of five environments: {emp, L, L2, iL, s-emp}
were given to a robot. Additionally 10 and 12 differ-
ent shape environments were used ((e) and (f) in Ta-
ble 1). The “GN” is the generation number in which
GA stopped, and “MaxF” means the maximum fitness
value at GN. The numbers in GN and MaxF stand for
averages, and the bracketed numbers are standard de-
viations. This format is common in all the experimen-
tal results. Fig.7 indicates the action traces of the best
individuals at GN in (d). Fig.8 shows the maximum
values and average values of fitness at every genera-
tion for (f) of Exp-1. The average of fitness increased
monotonously as well as the maximum of fitness. In
such simple environments, the suitable behaviors for
AEM were obtained within few generations. The stan-
dard deviations was large in GN and small in MaxF,
and this tendency was observed through all the exper-
iments. Seeing from Fig.7, different action sequences
were obtained depending on the structure of the envi-
ronments.

Table 1 Experimental results in Exp-1

Env. Train. env. GN MaxF
(a) {emp, L} 1.0 (0) 2.80 (0.106)
(b) (a) + L2 2.6 (1.84) 2.43 (0.131)
(c) (b) + iL 2.8 (1.69) 2.44 (0.025)
(d) (c) + s-emp 2.8 (1.75) 2.44 (0.093)
(e) 10 env. 2.1 (0.738) 2.51 (0.024)
(f) 12 env. 5.2 (3.08) 2.48 (0.07)

(a) emp (b) L (c) L2

(d) iL (e) s-emp

Figure 7 Trace of actions in Exp-1

5.2 Exp-2: Different lights and shape

Next, by adding different lights to environments in
number and position, we made five environments:
{emp, 1-la, 2-la, 3-la, 4-la}. Exp-2A is made by using
the subsets of the environments. Light was so strong
that a robot can detect the light direction in any place.
The experimental results are shown in Table 2. Fig.9
indicates the action trace of the best individual at GN
in (j). In the figures, a black circle stands for a light.

Though the GN increased over ones in Exp-1, the suit-
able behaviors were obtained. Note that we cannot
intuitively understand the behaviors in Fig.9. This
means that it is very hard for human to design such
behaviors by hand-coding and this automatic design
method is quite effective.

Table 2 Experimental results in Exp-2A

Env. Train. env. GN MaxF
(g) emp, 1-la 1.6 (0.966) 2.68 (0.196)
(h) (g) + 2-la 4.8 (2.78) 2.59 (0.131)
(i) (h) + 3-la 9.3 (5.19) 2.59 (0.111)
(j) (i) + 4-la 10.0 (5.94) 2.62 (0.075)

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Ave.

Fi
tn

es
s

Generations

Max.

Figure 8 Fitness for twelve environments

(a) emp (b) 1-la (c) 2-la

(d) 3-la (e) 4-la

Figure 9 Trace of actions in Exp-2A

We also set six environments: {emp, 1-la, L, L1-la, iT,
iT1-la} by adding lights to three environments with
different contours, and made experiments Exp-2B us-
ing them. Each environment is included different class
and all of them should be distinguished. As a result,
GN was 13.2(7.67) and MaxF was 2.61(0.091). Fig.10
shows the action traces of the best individual at GN.
Over all the environments, actions are very different
mutually, and the design seems to be difficult.

5.3 Exp-3: A single class including plural
training environments

In Exp-1 and Exp-2, each environment is included in
different classes. However, in this experiment, plural
environments are included in a single class. For recog-
nizing such environments, better generalization is nec-
essary. We assigned three classes to six environments
used in Exp-2B: {emp, 1-la}, {L, L1-la}, {iT, iT1-la},
and made experiments Exp-3. As a result, GN was

(a) emp (b) 1-la (c) L

(d) L1-la (e) iT (f) iT1-la

Figure 10 Trace of actions in Exp-2B

8.8(4.24) and the maximum fitness was 2.61(0.091).
Thus our approach is valid for induction from several
instances of a class.

6 Discussion

6.1 Comparison with hand-coded behaviors

It is very difficult that a human designs the behaviors
obtained in most of the above experiments. Note that
the obtained behaviors are different from the behav-
iors, like wall-following, random walking, which a hu-
man has designed for AEM thus far. Since the search
space is huge and we have few heuristics for efficiency,
the design task becomes very difficult.

We compare the learned behaviors with wall-following
which is typical hand-coded behaviors for AEM as
mentioned in §1. Fig.11 shows average length of action
sequences for test environments in Exp-1 (Table 1). As
seeing from the figure, learned behaviors are more effi-
cient than wall-following in all environment sets. Thus
our approach designed more efficient behaviors than
typical hand-coded behaviors.

Furthermore we again made Exp-1 by introducing 1%
random noise to initial positions and rotation of a mo-
bile robot. Though the noise is very small, it made the
problem very difficult and the behaviors were acquired
in only (a), (b), (c) except (d), (e), (f). This difficulty
has been pointed out [18] and is still an open problem
in our approach.

6.2 Difficulty of behavior acquisition

As seeing from Env.(a) in Table1, the suitable behav-
iors are already included in the initial population. This
implies that though the search space is huge, the large

0

100

200

300

400

500

(a) (b) (c) (d) (e) (f)

Wall-following
Learned behaviors

Environments

L
en

gt
h

of
 a

ct
io

n
se

qu
en

ce
s

Figure 11 Comparison with wall-following

number of suitable behaviors exist for Env.(a). To
verify this expectation, we investigated the executed
behaviors of individuals with maximum fitness in 10
different trials. As results, the executed behaviors are
categorized into five classes shown in Table.3. The
bracketed number indicate the number of the cate-
gorized behaviors in the class, and the actions were
described earlier. The intuitive explanations on the
states are as follows.

• State S0 : No obstacle and light around a robot.

• State S9 : Obstacle in the left and no light.

• State S18 : Obstacle in the front and no light.

• State S36 : Obstacle in the right and no light.

As seeing from Table.3, this 10 individuals experienced
only the subsets of {S0, S9, S18, S36}. Thus the ac-
tual combination of states is 44 = 256. Also each of
BS-1 and BS-2 has four suitable behaviors3, and each
of BS-3, BS-4, BS-5 has a single suitable behavior.
As results, the total number of suitable behaviors is
11. Since the population size is 50, the probability
that any suitable behavior exists in the initial pop-
ulation is 1 − (256−11

256)50 = 0.89. This supports the
fact that suitable behaviors exist in the initial popula-
tion. Furthermore we investigated the average number
of suitable behavior classes was 3.4∼ 18.4. Hence we
found out a robot actually experienced a small part
of 72 states. We are developing heuristics to speedup
evolution using the bias of executed behavior[9].

3Because BS-1 does not care the action for S9 and the
number of actions is four. BS-2 is similarly.

Table 3 Executed behaviors
behaviors behaviors

BS-1 (5) S0 → A1 BS-4 (1) S0 → A1
S18 → A2 S9 → A1
S36 → A2 S18 → A2

BS-2 (1) S0 → A1 S36 → A4
S9 → A3 BS-5 (1) S0 → A1
S18 → A3 S9 → A4

BS-3 (2) 0 → A1 S18 → A3
S9 → A3 S36 → A2
S18 → A2
S36 → A4

7 Conclusion

We proposed evolutionary acquisition of suitable be-
haviors to Action-based Environment Modeling. GA
was applied to search the behaviors, and the simulated
mobile robots were used as individuals. States and
actions were described for coding chromosomes, and
we carefully defined a fitness function. We made vari-
ous experiments using different environments in shape,
lights and both of them, and found out our approach
is promising to learn suitable behaviors for AEM. Fur-
thermore some of learned behaviors were more efficient
than hand-coded ones. However there are open prob-
lems like the followings.

• Analysis and more complex domain: We must an-
alyze the experimental results for clarify how to
acquire the suitable behaviors. Furthermore we
will make experiments in more complex domains,
and clarify problems there.

• Implementing learned behaviors on a real robot :
Implementation on a real robot is our final target.
The gap between simulation and an real environ-
ment may make it difficult.

References

[1] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Ke-
dem, and J. S. B. Mitchell. An efficiently computable
metric for comparing polygonal shapes. IEEE Trans-
action on Pattern Analysis and Machine Intelligence,
13(3):209–216, 1991.

[2] R. A. Brooks. A robust layered control system for
a mobile robot. IEEE Transaction on Robotics and
Automation, 2(1):14–23, 1986.

[3] S. B. Cho and K. Shimohara. Emergence of struc-
ture and function in evolutionary modular neural net-
works. In Proceedings of the Fourth European Confer-
ence on Artificial Life, pages 197–204, 1997.

[4] J. L. Crowly. Navigation of an intelligent mobile
robot. IEEE Transaction on Robotics and Automa-
tion, 1(1):31–41, 1985.

[5] B. V. Dasarathy. Nearest Neighbor (NN) Norms: NN
Pattern Classification Techniques. IEEE Computer
Society Press, 1991.

[6] I. Harvey, P. Husbands, and D. Cliff. Issues in evo-
lutionary robotics. In Proceedings of the Second In-
ternational Conference on Simulation of Adaptive Be-
havior, pages 364–373, 1992.

[7] J. Holland. Adaptation in Natural and Artificial Sys-
tems. University of Michigan Press, 1975.

[8] T. Ito, H. Iba, and M. Kimura. Robustness of robot
programs generated by genetic programming. In Ge-
netic Programming 1996, Proceedings of the First An-
nual Conference, pages 321–326, 1996.

[9] D. Katagami and S. Yamada. Speedup of evolutionary
behavior learning with crossover depending on the us-
age frequency of a node. In The 1999 IEEE Systems,
Man, and Cybernetics Conference, pages V601–V606,
1999.

[10] J. R. Koza. Evolution of subsumption using genetic
programming. In Proceedings of the First European
Conference on Artificial Life, pages 110–119, 1991.

[11] J. R. Koza. Genetic Programming. MIT Press, 1992.

[12] M. J. Mataric. Integration of representation into goal-
driven behavior-based robot. IEEE Transaction on
Robotics and Automation, 8(3):14–23, 1992.

[13] O. Michel. Khepera Simulator v.2 User Manual. Uni-
versity of Nice-Sophia Antipolis, 1996.

[14] T. Nakamura, S. Takamura, and M. asada. Behavior-
based map representation for a sonar-based mobile
robot by statistical methods. In Proceedings of the
1996 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 276–283, 1996.

[15] U. Nehmzow and T. Smithers. Map-building us-
ing self-organizing networks in really useful robots.
In Proceedings of the First International Conference
on Simulation of Adaptive Behavior, pages 152–159,
1991.

[16] P. Nordin and W. Banzhaf. A genetic programming
system learning obstacle avoiding behavior and con-
trolling a miniature robot in real time. Technical re-
port, Department of Computer Science, University of
Dortmund, 1995.

[17] D. S. Olton. Spatial memory. Scientific American,
236(6):82–99, June 1977.

[18] C. W. Reynolds. Evolution of obstacle avoidance be-
havior: Using noise to promote robust solutions. In
J. K. E. Kinnear, editor, Advances in Genetic Pro-
gramming, volume 1, chapter 10, pages 221–241. MIT
Press, 1994.

[19] S. Yamada and M. Murota. Unsupervised learning to
recognize environments from behavior sequences in a
mobile robot. In Proceedings of the 1998 IEEE In-
ternational Conference on Robotics and Automation,
pages 1871–1876, 1998.

