
Adaptive Action Selection without Explicit Communication

for Multi-robot Box-pushing

Seiji Yamada Jun’ya Saito

CISS, IGSSE, Tokyo Institute of Technology
4259 Nagatsuta, Midori, Yokohama 226-8502, JAPAN

Abstract

This paper describes a novel action selection method
for multiple mobile robots box-pushing in a dynamic
environment. The robots are designed to need no
explicit communication, and be adaptive to a dy-
namic environments by changing modules of behav-
iors. Though it is a significant problem to deal with
adaptive action selection for multiple mobile-robots in
a dynamic environment, few studies have been done.
Decentralized control of robots without explicit com-
munication is also practical and important for ro-
bustness. Thus we propose adaptive action selection
without explicit communication for multi-robot box-
pushing, which changes an available behavior set de-
pending on a situation. First four situations are de-
fined with two parameters: existence of other robots
and task difficulty. Next we design a set of behaviors
for each situations, and mobile robots are programmed
to act with behavior-based approach. We fully imple-
ment our method on four real mobile robots, and make
experiments in dynamic environments.

1 Introduction

For attacking a task which a single robot can not
achieve, many studies on multiple mobile robots coop-
eration have been done. They are categorized into two
classes: centralized control [11][6][12] and decentralized
control [10][5][4][3][2][7]. In centralized control, a cen-
tral system obtains global information on an environ-
ment including all the robots by sensing or communi-
cation, and determines actions for all the robots. Then
the central system sends commands to all the robots,
and they act according to the commands. Though
this approach has the advantage that robots act ef-
ficiently, it is less robust than decentralized control
because all the robots stops when the central system
is down. Thus the multi-robot system in decentralized
control have also been investigated. However both of

the two approach have the following significant prob-
lems.

1. Explicit communication: Most multi-robot sys-
tems [11][6][12][2][8] in centralized control need
explicit communication using a transmitter and a
receiver. Since such communication may be ex-
pensive and unstable depending on an environ-
ment, a multi-robot system without explicit com-
munication is more robust and inexpensive.

2. A dynamic environment : It is practical that an
environment changes due to a fault of a robot,
introduce of new robots, task change, etc. How-
ever most multi-robot systems [10][5][11][6][12][2]
[7][4][3] does not have an effective mechanism to
deal with a dynamic environment.

To cope with the problems above, we propose a
novel action selection method for multiple mobile
robots box-pushing in a dynamic environment. It does
not need explicit communication and is adaptive to a
dynamic environment in which the number of robots
and task difficulty change.

In this paper, first four situations are defined with
two parameters: existence of other robots and task
difficulty. Next we design a set of behaviors for each
situations, and mobile robots are programmed to act
by behavior-based approach. We fully implement our
method on the four real mobile robots, and make ex-
periments in dynamic environments.

2 Defining situations to describe a dy-
namic environment

2.1 A task and an environment

First of all, we describe a task and an environ-
ment. The task of multiple mobile robots is to push
boxes to a goal. The environment is a flat square ta-
ble (110cm×90cm) enclosed with white plastic boards
(Fig.1). A lamp is set beside the table, and the goal
is the nearest wall to the lamp (Fig.1). The task is



achieved when a box touches the goal. In current ex-
periments, there is no obstacle. A miniature mobile
robot KheperaTM (Fig.2) is used for our research. As
shown in Fig.3, it has two DC motors as actuators
and eight Infra-Red proximity sensors which measure
both distance to an obstacle and light strength. It
also has an encoder for investigating the rotation of
wheels. However the sensor data is imprecise and lo-
cal. Since a box is made of clear plastic boards, a
robot can sense the light through the box. A robot
can sense the direction of the goal (lamp) at any place
in an environment.

A lamp

Goal

A box

A robot

Figure 1 Environment

32mm

55mm

Figure 2 Khepera

2

0
1

3
4

5

7 6

IR proximity sensors
DC motors

Figure 3 Sensors

We use the following assumptions for an environ-
ment, and these are actually held in all the experi-
ments.

AS-1 There is no moving object except a robot.
AS-2 When a robot tries to push an object (like a

wall, a heavy box) which can not be moved, its
wheels does not rotate. In other words, a robot
does not skid.

2.2 Defining situations

For describing a dynamic environment in multi-
robot box-pushing, we use two parameters: the exis-
tence of other robots and task difficulty. The existence
of other robots means whether other robots exist in a
environment, and task difficulty means whether there
is a heavy box which a single robot can not push. Us-
ing the parameters, we can describe a large part of the
change in general dynamic environments, e.g. some
robots stop by breakdown, some robots are added into
or removed from the environment, too heavy boxes for
single-robot pushing are added into or removed from
the environment, etc. We describe the the existence of
other robots and task difficulty with atomic formula
M and T respectively. M means that another robot
is observed, and ¬M means that it is not observed.

T means that a heavy box which a single robot can
not push is not observed, and ¬T means that there
such a box is observed. Thus, using the conjunctions
of the atoms, four classes {M ∧ T , ¬M ∧ T , M ∧¬T ,
¬M ∧ ¬T } of dynamic environments are described,
and we call them situations. The following explains
the situations and suitable behaviors in them. Note
that each robot determines its own situation by itself
without explicit communication on a situation with
other robots. Thus the determined situation may be
globally incorrect.

• S1 = ¬M ∧ T (A single robot and easy task) :
Since a robot can push a box by itself, it achieves
the task singly.

• S2 = M ∧ T (Multiple robots and easy task) :
Each robot pushes a box independently.

• S3 = M ∧ ¬T (Multiple robots and hard task) :
Since a robot can not push a box singly, robots
push a box cooperatively.

• S4 = ¬M ∧ ¬T (A single robot and hard task)
: The task is not achieved as long as be in this
situation S4 . As mentioned above, other robots
or a light box may globally exist. Thus a robot
wonders to search for them. When a robot finds
them, its situation changes to S1∼S3 .

2.3 Architecture

Every robot is homogeneously designed using an
architecture in Fig.4. The situation recognizer con-
stantly monitors data from sensors, and determines
the current situation. Then it activates a suitable SBS
(situated behavior set , mentioned in the next section)
to the current situation, and a robot acts using the
activated SBS .

E
nv

ir
on

m
en

t

Sensed data

Action

Situation recognizerSensed data

A single robot

S2
SBS-2

S3
SBS-3

S4
SBS-4

Action selection

S1
SBS-1

Situation transition

Figure 4 Architecture



2.4 Recognizing a situation and the situ-
ation transition

For adaptation to a dynamic environment, a robot
recognizes a current situation and change a suitable
SBS by itself. Thus the situation recognizer of a robot
constantly monitors the following conditions for deter-
mining M or ¬M and T or ¬T .

• Checking M : A situation recognizer investigates
the change of sensor data when a robot stops.
If the change occurs, other robots exist in the
environment, and M becomes true. This uses AS-
1 in § 2.1.

• Checking ¬M : ¬M becomes true if M does not
become true within a certain time Tm after M
became true last.

• Checking T : When a robot tries to push an ob-
ject and its wholes are rotated, there is a box
which a single robot can push. Then T becomes
true. This uses AS-2 in § 2.1.

• Checking ¬T : When a robot continuously col-
lides with objects, which it can not move, more
than Tt times, ¬T becomes true.

3 Situated behavior sets

We apply a behavior-based method [1] to control a
mobile robot. Though a behavior-based method can
not control a robot precisely, it does not need a strict
model of a robot and an environment. A behavior
is a rule: If a state then an action, where the state
(not an internal state) is directly determined by sensed
data, and the action is primitive. We design a set of
behaviors for each situation, and such a set is called a
SBS (situated behavior set). Each SBS is explained in
the following, where SBS-i means a situated behavior
set for a situation Si .

3.1 Describing states and actions

Directions used to describe states are defined. The
forward-sensors and back-sensors are sensor 1∼4 and
sensor 6, 7 in Fig.3, respectively. The left-sensor and
right-sensor are sensor 0 and sensor 5 in Fig.3. The
following states and actions are defined. Note that no
explicit communication is utilized fro executing behav-
iors.

States
• forward/back/left/right-object: An object within

20 mm from a robot is sensed with forward/back
/left/right-sensors.

• forward/back/left/right-light: The forward/back
/left/right-sensors have the maximum light value.

• no-light : The light values in all the directions are
almost same.

• no-rotation: Though motors are commanded to
drive, they are sensed not to rotate by an encoder.

Actions
• direction-change: A robot turns 180̊ .
• push-clockwise/counterclockwise: A robot rotates

a box clockwise/counterclockwise by pushing.
• push-straight : A robot pushes a box straight.
• turn-left/right : A robot turns left or right.
• go-ahead: A robot goes ahead.
• stop: A robot stops.

3.2 SBS-1: A single robot box-pushing

In S1 , the following behaviors are used for a sin-
gle robot to push a box to a goal1 . Fig.5 shows the
executions of B-3∼B-5.

B-1 If ¬ forward-object ∧ ¬ left-object ∧ ¬ right-object
then go-ahead.

B-2 If forward-object ∧ no-rotation then direction-
change. (This is executed when a robot collides
with a wall.)

B-3 If forward-object ∧ left-light then push-clockwise.
(Fig.5(a) shows the action.)

B-4 If forward-object ∧ forward-light then push-
straight . (Fig.5(b) shows the action.)

B-5 If forward-object ∧ right-light then push-
counterclockwise. (Fig.5(c) shows the action.)

(a) (b) (c)

Figure 5 Execution of B-3∼B-5

3.3 SBS-2: Distributed box-pushing

SBS-2 for S2 is almost similar to SBS-1 . How-
ever we need to deal with interaction among robots.
Through experiments in which SBS-1 is straightfor-
ward applied to S2 , we found harmful interaction be-
tween robots shown in Fig.6. Fig.6(a) shows that two
robots push the same box in opposite sides. Thus

1 Though each SBSs are mutually independent, plural be-
haviors may conflict in the same SBS . Thus we uses the two
conflict resolution criteria: (1) more specific (more conditions)
behavior is preferred, (2) the behavior with a younger number
is preferred.



both robots stop, consider the box a wall, and go
away. Fig.6(b) shows that a robot pushes another
robot. This case is less efficient than a case that both
of them push a box. Fig.6(c) shows that two robots
pushing a box touch together. This case often causes
the Fig.6(b).

For avoiding the interactions, we add the follow-
ing behaviors to SBS-1 , and construct SBS-2 with B-
1∼B-9. Using B-6 for Fig.6(a), a robot with its back
to a goal changes its direction, and another robot fac-
ing a goal can push a box. Using B-7 for Fig.6(b),
R1 stops when an object is sensed in its back, and R2
goes away because it recognizes R1 as a wall. Using
B-8 and B-9 for Fig.6(c), a robot turns to the oppo-
site direction a little and separates from another robot
when an object is sensed left or right. These behav-
iors are inspired by behaviors for simulating a flock of
birds[9].

B-6 If forward-object ∧ back-light then direction-
change.

B-7 If forward-object ∧ back-object then stop.
B-8 If forward-light ∧ forward-object ∧ left-object

then turn-right .
B-9 If forward-light ∧ forward-object ∧ right-object

then turn-left .

(a) (b) (c)

R1

R2

Figure 6 Harmful interaction

3.4 SBS-3: Box-pushing in swarms

In S3, since a single robot can not move a box,
robots need to swarm for pushing a box coopera-
tively. A swarm has various shape: a line, a circle,
a arrow, etc. We use a line so that a robot can
avoid harmful interaction. Behaviors for swarming
is somewhat complex because a robot needs to rec-
ognize other robots. Hence we introduce additional
states: forward/right/left/back-robot, forward/back-
robot-leaving, and an action: following, side&push.
The forward/right/left/back-robot means that another
robot is sensed forward/right/left/back, and is deter-
mined by a procedure for checking M in § 2.4. The
forward/back-robot-leaving means that another robot
which was sensed forward/back becomes not to be
sensed. The following means that a robot moves to
the direction in which another robot was sensed or

left. The side&push means that aligned robots move
to side and pushes a box cooperatively like Fig.7. SBS-
3 consists of the following three subsets.

Figure 7 Cooperative formation

Swarming: Swam is constructed by wandering until
a robot find other robots and following others. By
adding a following behavior to SBS-1 , a robot does
such actions.

B-10 If left-robot∨right-robot ∨ then following.

Keeping a line: For keeping a line, suitable behav-
iors for a head and not-head robots are designed in
the following. A head robot goes ahead when another
robot is sensed in its back, and stops when no robot
is sensed in its back. A not-head robot follows when
a front robot disappears.

For a head robot
B-11 If ¬ forward-robot ∧ back-robot then go-ahead.
B-12 If ¬ forward-robot ∧ back-robot-leaving then

stop.

For not-head robots
B-13 If forward-robot-leaving then following.
B-14 If forward-robot then stop.

Box-pushing in a swarm: When aligned robots
find a box, they need to push the box cooperatively
like Fig.7. They also need to leave in a swarm when
they encounter a wall. These actions are done using
the following behaviors.

For a head robot
B-15 If forward-object ∧ back-robot ∧ forward-light

then push-straight .
B-16 If forward-object ∧ back-robot-leaving then fol-

lowing.
For not-head robots
B-17 If forward-robot ∧ back-robot-leaving then fol-

lowing.
B-18 If forward-robot ∧ ¬ forward-light then direction-

change.
B-19 If forward-robot ∧ forward-light then side&push.

Finally SBS-3 consists of SBS-1 and B-10∼B-19.



3.5 SBS-4: Acting for transition

In S-4 , since a robot recognizes neither other robots
nor a box which it can move singly, a box-pushing task
can not be achieved. However, though there are mul-
tiple robots or a box which a single robot can move,
the robot may only fail to find them. Thus a robot
wanders using SBS-1 until other robots or a light box
is found.

4 Experiments

We implemented the adaptive action selection
method on each of four Kheperas. The time parame-
ters Tm and Tt in § 2.4 are set 300 sec. and 10 times
respectively. In all experiments, the goal is the right
wall. Thus a robot tries to move a box to the right
wall. The cycle of action selection including time for
executing an action, is 100 m sec.

For investigating the utility of our approach, we
made experiments in various environments. First the
experiments were made in static environments without
the change of situations. Next we made experiments
in environments where a situation changed.

As results, the probability that the robots achieves
the task was more than 80% in each situation. We
investigated 30 random initial positions for each situ-
ation except ones in which robots can not push boxes
such as boxes touch with walls.

4.1 Results in each static situation

Experiments in S1 and S2: We set a light box
and a single robot in an environment, and ran a robot.
Fig.8 shows the trace of the actions. From seeing this
figure, we verified that a robot worked well in S1 . In
S2 where two robots and two light boxes were set,
each robot independently pushed a box as well as in
S1 (Fig.9).
Experiments in S3 and S4: A heavy box and
four robots are set for S3 . Fig.10 shows the trace

Figure 8 Trace of actions in S1

Figure 9 Trace of actions in S2

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 10 Box-pushing in S3

of the actions. The robots succeeded in swarming
(Fig.10(a)∼ (d)) and executing the side&push action
(Fig.10(e)∼ (h)). Next S4 is set with a heavy box
and a single robot. Then we observed that the robot
wanders to search for other robots or a light box.

4.2 Adaptation to a dynamic environ-
ment

By adding and removing robots and heavy boxes,
we changed the situation and observed behavior of
robots. As results, for all the changes between ar-
bitrary two situations in {S1 , · · ·, S4}, we verified
situation transition was independently done in each
robot, and suitable SBS was activated. When multi-
ple robots act in the same environment, each situation
transitions in them occurred asynchronously, and all
the robots presently converged to the same situation.

For example, Fig.11 shows actions after two robots
encountered in an environment where no heavy box
exists. They recognized that the current situation was



(a) (b) (c) (d)

Figure 11 The actions after encounter in S2

(a) (b) (c) (d)

Figure 12 The actions after encounter in S3

S2 , and SBS-2 was activated. Thus they left mutually
after they encountered. Then we added a heavy box
into the environment. The robots observed the heavy
box presently, and updated the current situation to
S3 . SBS-3 was activated, and they acted in a swam.
Fig.12 shows actions after the robots encountered in
such situation. They swarmed after encounter, not
leave mutually.
5 Discussion

Our approach have the following open problems.

Assumptions on an environment: We use some
assumptions on an environment: AS-1, AS-2 in § 2.1.
If these assumptions are not held, our multi-robot sys-
tem may not work well. Furthermore, when an envi-
ronment is very large or is not closed, multiple robots
may not swarm because they hardly encounter in such
an environment. Currently we assume there is no ob-
stacle in an environment. We consider our system can
deal with obstacles by modifying behaviors.

Scalability: Due to physical constraints, we did not
make the experiments using n robots (n ≥ 5). We
consider the SBS s and the behaviors defined above
are easily applied to such environments. However if
the number of robots increases more than several tens,
our approach may not be applied straightforward.

6 Conclusion

We proposed adaptive action selection without ex-
plicit communication for dynamic multi-robot box-
pushing. First, for describing dynamic environments,
we defined situations with two parameters: existence

of other robots and task difficulty. Next we designed
behavior sets for each of the situations. We fully im-
plemented our approach on four real mobile robots,
and verified the utility experimentally.

References

[1] R. A. Brooks. A robust layered control system for
a mobile robot. IEEE Transaction on Robotics and
Automation, 2(1):14–23, 1986.

[2] K. Kosuge and T. Osumi. Decentralized control of
multiple robots hnadling and object. In Proceedings
of the 1996 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 318–323, 1996.

[3] C. Kube and H. Zhang. The use of perceptual cues in
multi-robot box-pushing. In Proceedings of the 1996
IEEE International Conference on Robotics and Au-
tomation, pages 2085–2090, 1996.

[4] M. J. Mataric. Learning in multi-robot systems. In
G. Weißand S. Sen, editors, Adaption and Learning in
Multi-agent Systems, pages 152–163. Springer, 1996.

[5] M. J. Mataric, M. Nilson, and K. T. Simsarian. Co-
operative multi-robot box-pushing. In Proceedings of
the 1995 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 556–561, 1995.

[6] N. Miyata, J. Ota, T. Arai, E. Yoshida, D.
Kurabayashi, J. Sakaki, and Y. Aiyama. Coopera-
tive transport with regrasping of torque-limited mo-
bile robots. In Proceedings of the 1996 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 304–309, 1996.

[7] H. Osumi. Cooperative strategy for multiple mobile
manipulators. In Proceedings of the 1996 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 554–559, 1996.

[8] L. Parker. Alliance: an architecture for fault toler-
ant multirobot cooperation. IEEE Transaction on
Robotics and Automation, 14(2):220–240, 1998.

[9] C. W. Reynolds. Flocks, herds, and schools: A dis-
tributed behavioral model. ACM Computer Graphics,
21(4):25–34, 1987.

[10] D. J. Stilwell and J. S. Bay. Toward the develop-
ment of a material transport system using swarms of
ant-like robots. In Proceedings of the 1993 IEEE In-
ternational Conference on Robotics and Automation,
pages 766–771, 1995.

[11] H. Sugie, Y. Inagaki, S. Ono, H. Aisu, and T. Unemi.
Placing objects with multiple mobile robots – mutual
help using intention inference. In Proceedings of the
1995 IEEE International Conference on Robotics and
Automation, pages 2181–2186, 1995.

[12] Z. Wang, E. Nakano, and T. Matsukawa. Realiz-
ing cooperative object manipulation using multiple
bebavior-based robots. In Proceedings of the 1996
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 310–317, 1996.


