Evolutionary Design of Mobile Robot Behaviors
for Action-Based Environment Modeling

YAMADA Seiji

CISS, IGSSE, Tokyo Institute of Technology
4259 Nagatsuta, Midori, Yokohama 226-8502, Japan
E-mail: yamada@ymd.dis.titech.ac.jp
URL: http://www.ymd.dis.titech.ac.jp/ yamada/index-e.html

Abstract. This paper describes an evolutionary way to design behav-
iors of a mobile robot for recognizing environments. We have proposed
an action-based approach (called AEM) for a mobile robot to recog-
nize environments. In AEM, a behavior-based mobile robot acts in each
environments and action sequences are obtained. The action sequences
are transformed into vectors characterizing the environments, and the
robot identifies the environments with the vectors. The design of suit-
able behaviors for AEM is very difficult for human because the search
space is huge and intuitive understanding is hard. Thus we develop the
evolutionary design of such behaviors using genetic algorithm.

1 Introduction

The most studies to recognize environments have tried to build a precise ge-
ometric map using a robot with high-sensitive and global sensors. However,
just to recognize environments, such a strict map may be unnecessary. Thus
we have tried to build a mobile robot which recognizes environments only with
low-sensitive and local sensors, and proposed approach that a mobile robot can
recognize the environment with action sequences. We call this approach AEM
(Action-based Environment Modeling) [5]. In AEM, a mobile robot acts using
given suitable behaviors like wall-following in environments. Then the action
sequences executed in each environment are obtained, and transformed into en-
vironment vectors. A robot identifies the environments by comparing them.

Through the research on AEM, we recognized a significant problem: where
the suitable behaviors come from?. An easy solution is that human designs the
behaviors. However the task becomes quite difficult for a human designer as
the variety of environments increases. In this paper, we propose the evolution-
ary design method of such behaviors using GA (Genetic Algorithm) and make
experiments for evaluation.

In the similar approach to AEM, several studies have been done in robotics
[2] and artificial life [4]. In most researches, wall-following has been used as
suitable behaviors in [2][4][5]. Unfortunately the behaviors were described by
human designers, and fixed.

A TODOT aCl 5
environmerjt
Test

Training
env.

env. g
Action Action
sequence sequence

Chain coding Chain coding Fig. 2. Khepera
transformation transformation
N Environment Environment
\\ vector vector

DC motor

Storing Comparing with
instances stored instances Infrared
proximity sensor
7 6
(a) Training phase (b) Test phase ==
Fig. 1. Overview of AEM Fig. 3. Sensor positions

2 Task: Action-based Environment Modeling

In AEM [5], a mobile robot is designed in a behavior-based approach [1]. The
behavior means mapping from states to actions. An AEM procedure consists
of two stages: a training phase and a test phase (Fig.1). In the training phase,
training environments having a class are given to a robot. The class means a
category in which the environment should be included. The mobile robot acts
in the environments using given behaviors and obtains sequences of executed
actions (called action sequence) for each of them. They are transformed into real-
valued vectors (called environment vectors) using a chain coding-like method.
The environment vectors are stored as instances, and the training phase finishes.

In the test phase, a robot is placed in a test environment which is one of
training environments. The robot tries to identify the test environment with one
of training environments. The identification is done using 1-Nearest Neighbor
method, i.e. the robot selects the most similar instance to the test environment,
and considers that the class of the instance is that of the test environment. The
similarity is evaluated with Euclidean distance between environment vectors.

Since the suitable behaviors depend on environment structure which a robot
should recognize, they have been described by human designers thus far. However
the task is very difficult because of a huge search space.

3 States, actions and environment vectors

Using real mobile robots as individuals in GA is not practical because it is
impossible to operate several tens of real robots over more than one hundred
generations. Thus we use a simulator of Khepera (Fig.2). As shown in Fig.3, it

has two DC motors as actuators and eight Infra-Red proximity sensors which
measure both distance to obstacles and light strength.

We describe a state with the range of a sensed value. For reducing the search
space of behaviors, we restrict states and actions. A sensor on Khepera returns
10 bit values for distance and light strength. Thus we transform the distance
into binary values 0 or 1. The “0” means an obstacle exists within 3cm from
a robot, and “1” means it does not exist. Furthermore only three (front, left
and right) of eight sensors are used. Next states for light strength are described
using only 4 sensors (front, left, right and back). We describe a state using the
sensor with the strongest light value and its binary values which mean a light
is “near” or “far”. A state in which all of the sensors has almost same values is
also considered. As a result, the number of states for light is nine, and the total
number of states is 72 (= 23x 9). We also describe four actions; A7: Go 5mm
straight on, A2: Turn 30° left, A3: Turn 30" right, A4: Turn 180° left.

The generated action-sequence is transformed into an environment vector.
Let an action-sequence and its environment vector be [a1, as, - -, an] (a; € {A1,
A2, A3, A4}, ap = 0) and V = (v1, va, -+, vy) (m > n) respectively. The
vector values of V' are determined by four rules: If a; = A1 then v; = v;_1,
If a; = A2 then v; = v;_1 + 1, If a; = A3 then v; = v,_1 — 1, If ¢; = A4
then v; = —v;_1. They change the vector value when the direction of movement
changes in the similar way to chain coding which is a popular method in pattern
recognition.

4 Applying GA to acquire behaviors

GA procedure and coding We use a simple GA procedure and parameters
in the followings. We use the coding in which one of actions {A1, ---, A4} is
assigned to each state.

— Population size: 50, Crossover operator: Uniform crossover.
— Selection method: Elite strategy and tournament selection (the size = 2).
— Crossover rate Peross: 0.8, Mutation rate Pp,u: 0.05

Defining a fitness function We introduce three conditions for suitable be-
haviors to AEM: termination of actions, accuracy and efficiency of recognition.
The fitness functions for each conditions are defined, and integrated.

A robot has to stop when it returns to the neighborhood of a start point.
(No. of E-trial) + (No. of H-trial)
2x (Total No. of trials)
E-trial and H-trial means trials in which a robot escaped from the neighbor-
hood of the start point and trials in which it succeeded in returning. Accu-
racy of identifying environments is also important. It is evaluated with h =

No. of successful test e0v. ywhere h = 0 when g # 1. In AEM, the actions should

The termination is evaluated with g = , where

n

. . . S
be as small as possible for efficiency. Hence we introduce k = 1 — £&4=1""_where

n*Smaz

S; is the size of an action sequence in an environment i, S, is the given limited

Table 1. Experimental results in Exp-1 Table 2. Experimental results in Exp-2

Env.| Train. env. GN MaxF Env.|Train. env. GN MaxF
(a) | {emp, L} 1.0 (0) |2.80 (0.106) (g) | emp, 1-la [1.6 (0.966)|2.68 (0.196)
(b) | (a) + L2 |2.6 (1.84) |2.43 (0.131) (h) | (g) + 2-1a| 4.8 (2.78) |2.59 (0.131)
(c) (b) +iL | 2.8 (1.69) |2.44 (0.025) (i) | (h) + 3-la| 9.3 (5.19) |2.59 (0.111)
(d) |(c) + s-emp| 2.8 (1.75) |2.44 (0.093) (3) | (1) + 4-1a |10.0 (5.94)|2.62 (0.075)
(e) 10 env. |2.1 (0.738)|2.51 (0.024)

(f) 12 env. 5.2 (3.08) | 2.48 (0.07)

size of an action sequence, and k = 0 when h # 1. We finally integrate three
fitness function into f = g 4+ h + k having range [0, 3]. The utility of the fitness
function is investigated through successful experiments.

5 Experiments with simulation

We implement a system using a Khepera simulator [3], and make experiments. In
all experiments, we give each of training environments to a robot once. The robot
acts in the environments, and the environment vectors transformed from the
action sequences are stored as instances. Next each of the training environment
is given to the robot as a test environment, and the robot identifies each of the
test environments with one of the training environments. In all the experiments,
we had 10 trials having different initial population, and investigated the averages
and standard deviations of generation number in which GA stopped.

Exp-1: Environments with different contours in shape First we made
experiments Exp-1 using environments with different contours in shape. The
experimental results are shown in Table 1. Four parts ((a) ~ (d) in Table 1) of five
environments: {emp, L, L2, iL, s-emp} were given to a robot. Additionally 10 and
12 different shape environments were used ((e) and (f) in Table1). The “GN” is
the generation number in which GA stopped, and “MaxF” means the maximum
fitness value at GN. The numbers in GN and MaxF stand for averages, and the
numbers in brackets are standard deviations. This format is common in all the
experimental results. Fig.4 indicates the action traces of the best individuals at
GN in (d). In such simple environments, the suitable behaviors for AEM were
obtained within few generations. The standard deviations was large in GN and
small in MaxF, and this tendency was observed through all the experiments.
Seeing from Fig.4, different action sequences were obtained depending on the
structure of the environments.

Exp-2: Environments with different lights Next, by adding different lights
to environments in number and position, we made five environments: {emp, 1-la,
2-la, 3-la, 4-la}. Exp-2 is made by using parts of the environments. Light was so
strong that a robot can detect the light direction in any place. The experimental
results are shown in Table 2. Fig.5 indicates the action trace of the best individual
at GN in (j). In the figures, a black circle stands for a light.

(a) emp (b) L (c) L2 (e) s-emp

Fig. 4. Trace of actions in Exp-1 (Five environments)

P

(a) emp (b) 1-1a (c) 2-1a (d) 3-la (e) 4-1a

Fig. 5. Trace of actions in Exp-2

Though the GN increased more than ones in Exp-1, the suitable behaviors
were obtained. Note that we cannot intuitively understand the behaviors in
Fig.5. This means that it is very hard for human to design such behaviors by
hand-coding and this automatic design method is quite effective.

6 Conclusion

We proposed evolutionary design of suitable behaviors to AEM. GA was applied
to search the behaviors, and the simulated mobile robots were used as individu-
als. States and actions were described for coding chromosomes, and we carefully
defined the fitness function. We made experiments using different environments
in shape and lights, and found out our approach is promising to learn suitable
behaviors for AEM.

References

1. R. A. Brooks. A robust layered control system for a mobile robot. IEEE Transaction
on Robotics and Automation, 2(1):14-23, 1986.

2. Maja J. Mataric. Integration of representation into goal-driven behavior-based
robot. IEEE Transaction on Robotics and Automation, 8(3):14-23, 1992.

3. O. Michel. Khepera Simulator v.2 User Manual, 1996.

4. U. Nehmzow and T. Smithers. Map-building using self-organizing networks in really
useful robots. In Proceedings of the First International Conference on Simulation
of Adaptive Behavior, pages 152-159, 1991.

5. S. Yamada and M. Murota. Unsupervised learning to recognize environments from
behavior sequences in a mobile robot. In Proceedings of the 1998 IEEE International
Conference on Robotics and Automation, pages 1871-1876, 1998.

This article was processed using the ITEX macro package with LLNCS style

