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Abstract. This paper describes an evolutionary way to lean behaviors
of a mobile robot for recognizing environments. We have proposed AEM
(Action-based Environment Modeling) which is an appropriate approach
for a simple mobile robot to recognize environments, and made exper-
iments using a real robot. The suitable behaviors for AEM have been
described by a human designer. However the design is very difficult for
them because of the huge search space. Thus we propose the evolution-
ary design method of such behaviors using genetic algorithm and make
experiments in which a robot recognizes the environments with different
structures. As results, we found out that the evolutionary approach is
promising to automatically acquire behaviors for AEM.

1 Introduction

Primary research on an autonomous agent which recognizes a real environment
have been done in robotics. The most studies have tried to build a precise ge-
ometric map using a robot with high-sensitive and global sensors like vision
sensors [3]. Since their main aim is to navigate a robot with accuracy, the pre-
cise map is necessary. However, to recognize environments, such a strict map
may be unnecessary. Actually many natural agents like animals seem to recog-
nize environments only with low-sensitive and local sensors like touch sensors,
and a precise geometric map is not necessary. In terms of engineering, it is im-
portant to build a mobile robot which can recognize environments only with the
least sensors.

Thus we have tried to build a mobile robot which recognizes an environment
only with low-sensitive and local sensors. Since such a robot does not know its
position in an environment, it cannot build the global map of the environment
using sensor data. Hence we proposed approach that a mobile robot can recog-
nize an environment using action sequences generated by acting there. We call
the approach AEM (Action-based Environment Modeling), and implemented it
on a real mobile robot [15]. Using AEM, a robot can build a robust model of
an environment only with low-sensitive and local sensors, and recognize an en-
vironment. In our research, the mobile robot is behavior-based and acts using
given suitable behaviors (wall-following) for AEM in enclosures made of white



plastic boards. Then the sequences of the actions executed in each enclosure are
obtained. They are transformed into real-value vectors, and inputted to a Koho-
nen’s self-organizing network. Learning without a teacher is done and a mobile
robot becomes able to identify enclosures. We fully implemented the system on
a real mobile robot with two infrared proximity sensors, and made experiments
for evaluating the ability. As a result, we found out the recognition of enclosures
was done well.

However, in AEM, there is a significant problem: where the suitable behav-
iors come from. Although the design for such behaviors is very hard because of
the huge search space, it has been done by a human designer thus far. Hence we
propose an evolutionary design method of suitable behaviors for AEM using GA
(Genetic Algorithm), and make preliminary experiments. For future implemen-
tation on a real mobile robot, we use a Khepera simulator in the experiments.
From the experimental results, we found out that the evolutionary approach is
promising to automatically acquire behaviors for AEM.

In the similar approach to AEM, several studies have been done in robotics
[9][11] and A-Life [12]. Nehmzow and Smithers studied on recognizing corners
in simple enclosures with a self-organizing network [12]. They used direction-
duration pairs, which indicate the length of walls and shapes of past corners, as
an input vector to a self-organizing network. After learning, the network becomes
able to identify corners. Mataric represented an environment using automaton
consisting landmarks as nodes [9]. Though the representation is more robust
than a geometric one, a mobile robot must segment raw data into landmarks
and identify them. Nakamura et al. utilized a sequence of sonar data in order to
reduce uncertainties in discriminating local structure [11]. Though the sequence
consists of sensor data (not actions), their approach is similar to AEM.

Wall-following and random-walking were used as suitable behaviors in [9][12][15]
and [11] respectively. The behaviors were described by a human designer, and
fixed. Hence they have the same significant problem that the design of the be-
haviors is very difficult as AEM.

There are several studies for applying GP (Genetic Programming) [8] to
behavior learning of a mobile robot [14][7][6][13]. Unfortunately, in the studies,
very simple behaviors like obstacle avoidance were learned. In contrast with
them, our aim is to learn the suitable behaviors to AEM, and the behaviors is
complex one consisting of several kinds of primitive behaviors.

2 Action-base Environment Modeling and its Problem

In AEM, a mobile robot is designed with behavior-based approach [2]. The be-
havior means mapping from states to actions, and a human designer describes
states, actions and behaviors so that sequences of executed actions can represent
environment structure. Since AEM uses an action sequence, not sensed data, for
describing an environment, the model is more abstract and robust than a geo-
metric one [15].



An AEM procedure consists of two stages: a training phase and a test phase
(Fig.1). Tt uses 1-Nearest Neighbor method [4], one of effective supervised-
learning methods. In the training phase (Fig.1(a)), a robot is placed in a training
environments having a class in which the environment should be included. Plu-
ral environments may be included in the same class. The behavior-based mobile
robot acts in the environments using given behaviors, and obtains sequences
of executed actions (called action sequences) for each of them. The action se-
quences (lists of symbols) are transformed into the real-valued vectors (called
environment vectors) using chain coding [1]. The environment vectors are stored
as cases, and the training phase finishes.

Next, in the test phase (Fig.1(b)), a robot is placed in a test environment:
one of the training environments. The robot tries to identify the test environ-
ment with one of training environments, and we call this task recognition of an
environment. The identification is done by determined the most similar train-
ing environment (1-Nearest Neighbor) to the test environment. The similarity
is evaluated with Euclidean distance between environment vectors. The robot
considers that the most similar training environment has the same class to the
test environment, and recognition of environments is done.
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Fig. 1. Overview of AEM

However, in AEM, there is a significant problem: where the suitable behav-



iors come from. Since the suitable behaviors depend on an environment structure
which a robot should recognize, they have been described by a human designer
thus far. However the task is very difficult for him or her. Because the search
space for a suitable behavior is very huge: the computational complexity is O(a®),
where a and s are the number of actions and states. Thus, we propose an evo-
lutionary method to automatically acquire such behaviors using GA.

3 Describing a Mobile Robot, States and Actions

Using real mobile robots as individuals in GA is not practical because it is
impossible to operate several tens of real robots over more than one hundred
generations. Thus we use a simulator for acquiring behaviors, and intend to
implement the learned behavior on a real mobile robot.

3.1 A Simple Mobile Robot: Khepera

We use a miniature mobile robot Khepera™ (Fig.2, the radius and the height
are 25mm and 32mm) which widely used in A-Life and Al It has Motorola
68331 Micro processor, 256KByte RAM, and is programmable. As shown in
Fig.3, it also has two DC motors (two black bars in Fig.3) as actuators and eight
Infra-Red proximity sensors which measure both distance to obstacles and light
strength. However, since the sensor data is imprecise and local, Khepera cannot
localize itself in global map. In the later experiments, the simulator build for
Khepera will be used.

Fig. 2. Khepera Fig. 3. Sensor positions

3.2 State Description

We describe a state with the range of a sensed value. For reducing the search
space of behaviors, we restrict the number of states and actions as small as
possible.

Though a sensor on Khepera returns 10 bit (0~ 1023) value for distance and
light strength, the value is very noisy and crisp. Thus we transform the distance



value into binary vlues 0 and 1. The value “0” means an obstacle exists within
3cm from a robot. The value “1” means it does not exist. Furthermore only three
(front, left and right) of eight sensors are used for reducing states.

Next states for light strength are described. Since only simple behaviors like
approaching, leaving a light are considered suitable to AEM, we describe the
state using the label of the sensor with the strongest light value and binary
values which mean a light is “near” or “far”. As well as states for distance,
the only 4 sensors (front, left, right and back) are used. Additionally a state in
which all of the sensors has almost same values is also considered. As a result,
the number of states fot light is nine (= 2 x 4 + 1). The total number of states
is72 (=23 +9)

3.3 Action Description

The following four actions are described. In experiments in the past research [15],
we found the actions is sufficient for a mobile robot to do simple behaviors like
wall-following. A mobile robot acts in an environment by executing the actions,
and consequently an action-sequence like [A2, A4, A1, A1, - -] is obtained.

— A1l: Go 5mm straight on.
— A2: Turn 30° left.

— A3: Turn 30° right.

— A4: Turn 180°.

3.4 Transformation into an Environment Vector

The generated action-sequence is transformed into an environment vector. Let
an action-sequence and its environment vector be [a1, az, -+, an] (ap = 0, a; €
{Al, A2, A3, A4}) and V = (v, va, - -+, Uyp) respectively. The vector values of
V are determined by the following rules. They change the vector value when the
direction of movement changes. These rules are considered a kind of chain coding
[1]. For example, an action sequence [ A2, A2, A3, A3, A3, A4, Al] is transformed
into an environment vector (1,2,1,0,—1,1,1).

1. If a; = A1 then v; = v;_1.

2. If a; = A2 then v; = v;_1 + 1.
3. If a; = A3 then v; = v;_1 — 1.
4. If a; = A4 then v; = —v;_1.

As mentioned in §2, in training phase, training environments are given to
a robot for learning. The robots acts in the given environments, and stores the
environment vectors transformed from the action sequences. Next, in test phase,
test environments are given to the robot. It identifies the test environment with
one of training environments by 1-Nearest Neighbor method using Euclidean
distance as similarity.



4 Applying Genetic Algorithm to Acquire Behaviors

Since the number of states is 72 and that of actions is four, the number of
possible behaviors is 472 = 2.23 x 10%3. We have to search the suitable behaviors
to AEM in such a huge search space. Genetic algorithm [5] is applied to the
search because it does not need any domain-dependent heuristics.

4.1 GA Procedure and Coding Behaviors

In the followings, we describe GA procedure used in our research.

Stepl Initializing population: An initial population Iy, --- , Iy are randomly
generated.

Step2 Computing fitness: Compute the fitness f1, -+, fn for each individual
I, -, In.

Step3 If a terminal condition is satisfied, this procedure finishes.

Step4 Selection: Using f1, ---, fn, select a child population C' from the popu-
lation.

Step5 Crossover: Select pairs randomly from C' on probability P...ss (called
crossover rate). Generate two children by applying crossover to each pair,
and exchange the children with the pairs in C.

Step6 Mutation: Mutate the individuals in C based on mutation rate P..

Step7 Go to Step2.

We set the following parameters which are considered effective experimen-
tally.

Population size: 50

Selection method: Elite strategy and tournament selection (the size = 2).
Crossover operator: Uniform crossover.

— Crossover rate P.r,ss: 0.8

Mutation rate Py per gene: 0.05

Since we deal with deterministic action selection, not probabilistic, the be-
havior is mapping from a single state to a single action. Thus we use the coding

in which one of actions {A1, --- A4} is assigned to each state of sy, -+, s72
(Fig.4).

S1 Sp S3 Sy Sr1 Sw
A4 A1| A3 | A2 LR Ad| A2

Fig. 4. A coded behavior



4.2 Defining a Fitness Function

Fitness is a very important for GA. Thus we have to carefully define the fitness
function for AEM. We consider three conditions for suitable behaviors to AEM:
termination of actions, accuracy of recognition and efficiency of recognition. The
fitness functions for each conditions are defined, and then are integrated.

Termination of Actions A mobile robot needs to stop its actions by itself.
Otherwise it may act forever in an environment, and no action sequence is ob-
tained. Thus the termination of actions is the most important condition. We use
homing which a robot returns his home. Because homing is considered a gen-
eral method to terminate actions, and makes the length of an action sequence
depend on the size of an environment. A method to terminate actions within a
fixed length of an action sequence does not have such advantage. The homing
concretely means turning to the neighborhood of a start point, and the termi-
nation is evaluated with the following function g. Its range is [0, 1], and returns
1 when a robot succeeded in homing in all the training environments.

(No. of E-trial) 4+ (No. of H-trial)
2 x (Total No. of trials)

g:

where E-trial and H-trial means trials in which a robot escaped from the
neighborhood of the start point and trials in which it succeeded in homing.

Accuracy of Recognition Another important criterion is accuracy of identi-
fying test environments. The accuracy is evaluated with the following function
h. Its range is [0, 1], and when h = 1, all the test environments were recognized
correctly.

g=1

0<g<1

No. of correctly identified test env.
h = { Total No. 8f test env.

Efficiency of Recognition In AEM, a robot needs to act by operating actu-
ators for recognizing an environment, and the actions significantly cost. Hence
the actions should be as small as possible for efficiency of recognition. We hence
introduce the following fitness function for evaluating the efficiency!.

Y L A
k = n * Smaa:
0 0<h<1
where S; is the size of an action sequence obtained in ith test environment,
Smaz 18 the limited size of an action sequence, and n is the number of test envi-
ronments. The function have range (0, 1] and has larger value as more efficient.

! The obstacle avoidance is implicitly evaluated by the function k because the collision
increases the length of an action sequence.



We finally integrate three fitness function into the following fitness function
f having range [0, 3], and it is used in this research. Since the function h (or k)
takes 0 when g (or h) does not take 1, the function f is phased: the termination
of actions is satisfied when 1 < f, the recognition is completely correct when
2 < f, and the recognition efficiency is improved when 2 < f < 3.

f=g9+h+k

5 Experiments with Simulation

It is impractical that we use real robots as individuals in GA. Thus we im-
plement the system using a Khepera simulator [10], and make experiments in
it. The parameters used in all experiments are described in the followings: the
neighborhood of a start point is a circle with 100mm radius, and the limited size
of an action sequence is 2000 actions.

In the simulator, the motor has £10% random noise in velocity, 5% one in
rotation of robot’s body. Furthermore an Infra-Red proximity sensor has +10%
random noise in distance, and £5% one in light strength. These noise makes the
simulator close to a real environment.

If a robot cannot return home within the limited size, the trial ends in failure.
If the fitness value becomes more than two, the trial ends in success, and then
both termination and accuracy are satisfied. In all the following experimental
results, we show one of success trials, not averaged results.

In all experiments, we give each of training environments to a robot once.
The robot acts in the environments, and the environment vectors transformed
from the action sequences are stored as instances. Next each of the training
environment is given to the robot as a test environment, and the robot identifies
each of the test environments with one of the training environments. The start
points and directions is fixed in bottom center and left.

Note that though the test environments are same to training environments,
the action sequences are different because of the random noise in a simulator.
Thus the obtained behavior by our method has robustness[14][6].

In all the experiments, we had 20 trials which have different initial conditions
for GA and the generation was limited to 100. Some trials failed depending on
the initial condition. In the followings, we present the succeeded trials for each
experiment.

5.1 Exp-1: Environments with Different Contours in Shape

First we made experiments Exp-1 using environments with different contours in
shape. Parts of five environments: { empty, L, L2, invL, small-empty } are given
to a robot, and we investigated the ability to recognize them. Additionally twelve
different shape environments including the four ones are used.

The experimental results are shown in Table.1, and Fig.5 indicates the trace
of the robot with the maximum fitness in the expriment for the five environments.



The “GN” is the generation number in which the fitness value becomes more
than two, and “Max fitness” means the maximum fitness value.

In such simple environments, the suitable behaviors for AEM were obtained
within few generations. Seeing from Fig.5, different action sequences were ob-
tained depending on the environment structure.

Table 1. Experimental results in Exp-1

Training environments |GN|Max fitness
(1) {empty, L'} 1 2.84
(2) (1) + L2 2| 240
(3) (2) + invL 3 2.44
(3) + small-empty | 2 2.46
twelve environments| 9 2.45

(d) invL (e) small-empty

Fig. 5. Trace of actions in Exp-1



5.2 Exp-2: Environments with Different Lights in Number and
Position

Next, by adding different lights to environments in number and position, we
made five environments: {empty, 1-lamp, 2-lamp, 3-lamp, 4-lamp }. Exp-2 is
made by using parts of the environments. A light was so strong that a robot can
detect the light direction in any place. The experimental results are shown in
Table.2. Fig.6 indicates the trace of the robot with the maximum fitness in the
experiment for the five envirnments. In the figures, a black circle stands for a
light.

Though the GN increased more than ones in Exp-1, the suitable behaviors
were obtained. In Fig.6(a) ~Fig.6(c), the actions are slightly different. In con-
trast with them, the actions of Fig.6(d) and Fig.6(e) are significantly different
from that of Fig.6(a) ~Fig.6(c). The lights in the left area seem to influence
them strongly.

Table 2. Experimental results in Exp-2

Training environments|GN|Max fitness
(1)| { empty, 1-lamp } 2.85
(2)] (1) + 2-lamp 7 2.53
(3)] (2) + 3-lamp 2.77
(3) + 4lamp | 12| 277

—_

oo

5.3 Exp-3: Environments with Different Contours and Lights

We set six environments: { empty, 1-lamp, L, L-1-lamp, invT, invT-1-lamp } by
adding a light to three environments with different contours, and made experi-
ments Exp-3 using them. Each environment is included different class and all of
them should be distinguished.

As a result, GN was 13 and the maximum fitness was 2.38. Fig.7 shows the
trace of the robot with the maximum fitness. Over all the environments, actions
are very different mutually.

5.4 Exp-4: A Single Class Includes the Plural Training
Environments

In Exp-1~ Exp-3, all the environments are included in different classes. However,
in Exp-4, plural environments are included in a single class. For recognizing
such environments, generalization is necessary. We assigned three classes to six
environments used in Exp-3: { empty, 1-lamp }, {L, L-1-lamp }, {invT, invT-
1-lamp }, and made experiments. As a result, GN was 15 and the maximum



(d) 3-lamp (e) 4-lamp
Fig. 6. Trace of actions in Exp-2

(e) invT (f) invT-1-lamp

Fig. 7. Trace of actions in Exp-3



fitness was 2.63. Thus our approach is valid for induction from sevral instances
of a class.

6

Conclusions

We proposed the evolutionary acquisition of suitable behaviors to Action-based
Environment Modeling. GA was applied to search the behaviors, and the sim-
ulated mobile robots were used as the population. States and actions were de-
scribed for coding chromosomes. We made experiments in different environments
in shape and lights, and found out our approach is effective to learn behaviors.
However there are open problems like the followings.

— Analysis and more complex domain: We must analyze the experimental re-

sults for clarify how to acquire the suitable behaviors. Furthermore we will
make experiments in more complex domains, and clarify problems there.
Robustness against initial conditions: In all the experiments, start points
and start direction were fixed. However, when a real robot is used, such a
precise initial situation are impractical. Thus we must attempt experiments
in which the initial situation is noisy. The learning may be difficult because
a mobile robot acts sensitively to the initial situation [14].

Implementing learned behaviors on a real robot: Implementation on a real
robot is our final target. The gap between simulation and an real environment
may make it difficult.
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