Applying Self-Organizing Networks to Recognizing Rooms
with Behavior Sequences of a Mobile Robot

Seiji Yamada and Morimichi Murota

Interdisciplinary Graduate School of Science and Engineering
Tokyo Institute of Technology
4259 Nagatsuda, Midori-ku, Yokohama, Kanagawa 226, Japan
{yamada, murota}@ai.sanken.osaka-u.ac.jp

ABSTRACT

In this paper, we describe the application of a self-organizing network to the robot which
learns to recognize rooms (enclosures) using behavior sequences. In robotics research, most
studies on recognizing environments have tried to build the precise geometric map with high
sensitive sensors. However many natural agents like animals recognize the environments with
low sensitive sensors, and a geometric map may not be necessary. Thus we attempt to build a
mobile robot using a self-organizing network to recognize the enclosures, in which it acts, with
low sensitive and local sensors. The mobile robot is behavior-based and does wall-following in
an enclosure. Then the sequences of behaviors executed in each enclosure are obtained. The
sequences are transformed into real-value vectors, and inputted to the Kohonen’s self-organizing
network. Unsupervised-learning is done and a mobile robot becomes able to distinguish and
identify enclosures. We fully implemented the system using a real mobile robot and made
experiments for evaluating the ability. Consequently we found out the recognition of enclosures
was done well and our method was robust against small obstacles in an enclosure.

1. Introduction

In robotics research, most studies on recognizing an environment have been done for building the precise ge-
ometric map with high sensitive sensors [4]. However, since many natural agents like animals recognize their
environments with low sensitive sensors, a geometric map and high sensitive sensors may not be necessary
for recognizing environments. Thus we apply a self-organizing network to a mobile robot recognizing the
rooms with low sensitive sensors. In this paper, the rooms mean the enclosures in which a robot acts. The
robot does wall-following in rooms, and behavior sequences are obtained. The sequences are transformed
into real-value vectors, and inputted to a self-organizing network. Learning without a teacher is done and
the robot becomes able to identify rooms. Since we carefully defined the transformation from a behavior
sequence into an input vector and a self-organizing network worked well for generalizing data, the learned
network is robust against the noisy data from the rooms including small obstacles. We fully implemented
the system with a real mobile robot, and made experiments. As a result, we found out the recognition of
rooms was done well and our method was robust against the noisy data.

Nehmzow et al. studied on recognizing corners in rooms with a self-organizing network [6]. They used
a sequence of the length of walls, shapes (convex or concave) of corners as an input vector to the network,
and it learned to identify the corners. However the transformation is considered significantly sensitive to
noise like obstacles. In § 4, we proposes more robust representation than Nehmzow’s one.

In robotics, a self-organizing network has been used just to generalize raw sensor data [2]. In contrast with
such studies, in our research, the output of a self-organizing network directly indicates a particular room.
Thus we need to carefully define the transformation from a behavior sequence into an input vector so that
a network may cluster input data into correct classes corresponding to rooms. Defining the transformation
is an important problem which does not occur in straightforward application, and we propose a solution.

2. Overview

The overview of a whole system is shown in Fig. 1. First a behavior-based mobile robot [3] goes round once
in each of n rooms by wall-following, and obtains n sequences of executed behaviors. Next the sequences
(symbol lists) are transformed into the real-valued vectors, and the vectors are given to a self-organizing
network as input. Note that there is no teacher explicitly giving the correspondence from input vectors to
rooms.

The n input vectors are repeatedly given to the self-organizing network, and learning progresses. After
learning, a winner node of a self-organizing network indicates a particular one of the rooms explored by the
mobile robot. The test data are given to the learned network, and the mobile robot is able to identify them
to rooms. We mean this identification by room recognition.

Host computer
IBM-PC/AT
(DX4-100MHz) _
Wall-following
RS232C
A mobile
robot * \%
Behavior sequence
[CD.CD.CDD,CDCAACD,..]
2 D
5 i (a) No obstacle
g Trandformation
= to input vector \
Input nodes Input vector M
[0,00,01,1,11,222110001,..]
iri D
Test data framnng de (b) One obstacle

C K ohonen self-organizing network)
Learning

Larned network . .
Fig. 2 A mobile robot Fig. 3 Influence of an obstacle

OUTPUT: Room identified

Fig. 1 System overview

3. Wall-following by a behavior-based mobile robot

The mobile robot (Fig.2) has only two low-sensitive infrared proximity sensors: one in front direction and
the other in left direction on left side. It also has an orientation sensor and an encoder. Since the mobile
robot needs to do wall-following even in a room in which obstacles exist, we use the behavior-based approach
[3] which is robust against the change of an environment. We used four behaviors in the followings. As
executing the behaviors, the mobile robot always goes forward, and does wall-following clockwise. The walls
are considered as obstacles. We experimentally verified that the mobile robot did wall-following well using
the four behaviors.

Behavior A (turning in the concave corner): if any obstacle within 10 cm in the front and within 10 cm
in the left then turning 40° clockwise.

Behavior B (turning in the convezr corner): if no obstacle within 5 cm in the left and the right, and within
10 cm in the front then turning 40° counterclockwise.

Behavior C (wall-following-1): if any obstacle within 5 cm in the left then steering 13.5° right.

Behavior D (wall-following-2): if no obstacle within 5 cm in the left then steering 13.5° left.

4. Transformation from a behavior sequence into an input vector

By wall-following, a sequence of executed behaviors is obtained. The sequence has information on the shape
of the room: the length of a sequence of behavior C and D indicates the length of a wall, and behavior A
and B indicates a concave corner and a convex corner respectively. Thus we consider a mobile robot is able
to identify rooms with the sequences.

Since the ability of generalization and the robustness against noise, we introduce the Kohonen’s self-
organizing network for identifying rooms. The behavior sequence is a list of symbols, thus we need to
transform it into a real-valued vector as an input to the self-organizing network. The transformation should
be also robust and easily computed.

We use the transformation, called BI-transformation, like turning function [1]. The dimension of an
input vector is m which is the larger number than the length of the behavior sequence, n. Given a behavior
sequence [ry, ra, ..., r,] (r; € {A, B, C, D}) and an input vector I = (0,vs,...,v,,), the values of I are
determined using the following rules.

BI-transformation
(1) If r; = A then v; = v,y + 1. (2) If r;, = B then v; = v;—; — 1.
(3) If r, = Cor D then v; = v;_;. (4) otherwise v; =0 (i > n).

For example, Fig. 5(a) shows an input vector transformed from the behavior sequence in a square room.
The z and y axis indicate the dimensions and values of the input vector. For an input vector, the dimension
of an input vector indicates the periphery length of a room, the continuous line of the same vector value
indicates a wall, and the change of values stands for a corner.

We explain the robustness of Bl-transformation using an example shown in Fig. 3. The moving histories
of a mobile robot and the input vector transformed from the behavior sequences by Bl-transformation are
indicated in Fig. 3. Fig.3(a) stands for the case of a room without obstacle and Fig. 3(b) stands for the same
room including a obstacle (a black rectangle). Since the two rooms are identical, the mobile robot should
identify them as the same one. Because a self-organizing network classifies input vectors with the Euclidean
distance, the transformation needs to be defined so that the Euclidean distance between the two input
vectors may be small. Using the Bl-transformation results in the input vectors in the graphs of Fig.3. The
size of shaded areas in Fig.3(b) indicates the distance between the two input vectors, and it is relatively
small. Note that only a part of the input vector is shifted by an obstacle. If the robot uses more rigid
transformation in which the input vector is described with the length of walls, shapes (convex or concave)
of corners used in [6], all the input vector values will be shifted and the distance will become significantly
large. Hence we consider Bl-transformation is robust, and the effectiveness will be experimentally verified
in § 6.

5. Learning by a self-organizing network

In this section, we briefly explain the Kohonen’s self-organizing network [5]. The self-organizing network
clusters large dimensional input vectors by mapping them to small discrete vectors, and is used widely in
pattern recognition and robotics. A self-organizing network (Fig.4) is a two-layered network consists of an
input layer and a competitive layer. Any input node is linked to all competitive nodes, and all links have
weights. As an input vector is given, the input nodes have values corresponding to the input vector, and
the competitive nodes has values which stand for the distance between their weights and the input vector.
The winner node which has the minimum distance is determined, and the weights of the winner’s neighbor
nodes are updated.

Let an input vector and weights of links from all input nodes to a competitive node u; be E and U;
respectively.

E =[e, ez, -, e,] Ui = [wi1, %2, Win)

First a self-organizing network computes the distance between the input vector and competitive nodes.

The distance is computed with the following equation. Next the winner is determined.

IE-Uill= [> (e —ui)?

J

After a winner is determined, the weights of winner’s neighbor nodes are updated. The neighborhood
is defined depending on the dimension of a competitive layer. If a competitive layer is two dimensional,
a square having the winner as the center is often used as neighborhood. The equation for updating the
weights of neighbors is shown in the following, where the « is a learning rate.

i —w;;) : node ¢ is within neighborhood
new — 4ol 4 A, Aw;; = alej — wij) no .
Wi Wiy + Awi Wi 0 : otherwise

The learning is finished when no update is done. Next the input vector is given as test data and the
winner indicates the cluster including the input vector. The clustering is automatically done without a
explicit teacher.

[wiys)
Wl |(-

I

| t—

P —

[«

w

0 O O O O O 3

0O 00O0O0O)

0 O O O O O
o O O O O O

1

1

N
N W b

© O O 0 O O /Competitive o %7 101 201 s !
| ayer 1 101 201 301 01 101 200 301
(&) Small square (b) Convex (O H O 01 201 so1 a0t
: (d) Large square
AL =0 ey
— R - v
Node-1 Node-2 Node-n Input layer
(e1,e2 ..,en) Input vector 3 3 3
2 2 2
1 1 ” 1
Fig. 4 A self-organizing network Ol ot 20t a0t T 101 21 3 T T Ior 2o 301
(e) Concave ML (g) Rectangle

Fig. 5 Rooms

6. Experiments with a real mobile robot

Using the mobile robot mentioned earlier, we made experiments for evaluating the utility of our approach.
As seeing from Fig.1, the system consists of a mobile robot and an IBM-PC/AT compatible personal
computer (1486-DX4 100MHz) as a host computer. All programming was done on the host computer using
C**. The program of wall-following was down-loaded into a mobile robot through RS232C interface, and
the robot autonomously follows walls. After wall-following, the behavior sequences were sent to the host
computer and the learning by a self-organizing network was done there.

6.1. Environment and learning

We made experiments for evaluating the utility of our approach. Using white plastic boards, we built seven
rooms. Fig.5 shows the shapes and input vectors of the rooms. A mobile robot did wall-following ten times
for each room, and 70 behavior sequences were obtained in total. For each room, a single behavior sequence

was used as an input vector for learning, and other 9 sequences were used for testing. The largest length of
the behavior sequences was about 1400, and all sequences were compressed into 1/4 for fast computation.

We constructed a self-organizing network consisting of 520 input nodes and 32 competitive nodes located
in one dimension. Thus the neighborhood in the competitive layer is defined with d nodes on both sides
of the winner. We decreased the learning rate o and d linearly as learning iteration progresses. The initial
weights of links were set randomly over 1.5£0.15.

All of 70 behavior sequences were transformed into input vectors using Bl-transformation. The seven
training data (Fig.5) consisting of a single input vector for each of seven rooms were randomly given to a
self-organizing network until the total number becomes 4200. When the learning began to converge, the
particular nodes got to be winners frequently. We considered the winner nodes correspond to rooms, and
called them r-nodes. Hence the number of r-nodes is the number of rooms recognized by a robot.

In the test phase, at every time a test input vector was given, a winner node was determined with the
distance between the input vector and competitive nodes’ weights. We considered the nearest r-node to the
winner node in the competitive layer indicated a room in which the input vector was obtained.

6.2. Experiments

Exp-1: (identifying the rooms) After learning with training data, the test data (63 input vectors) were
given to the learned self-organizing network. As a result, we found all the test data were correctly identified,
and verified the utility of our approach. Note that the 10 input vectors for the identical room were somewhat
different mutually because the wall-following included noise like failure of executing behaviors.

Exp-2: (the rooms with obstacles) Though the test data used in Exp-1 included noise, it was not
so much. In this experiment, we dealt with more noise like obstacles. We located some obstacles in the
rooms, and the mobile robot did wall-following in the rooms. The nine behavior sequences were obtained
and transformed into input vectors. The input vectors (test data) were given to the self-organizing network
which was trained in Exp-1. As a result, five data were correctly identified. The robot failed to recognize a
room in which several obstacles scattered. However the obstacles made the room the different shape from
the original one, thus we consider the failure of identification is natural.

7. Conclusion

We described application of a self-organizing network to recognizing rooms with behavior sequences of a
mobile robot. A self-organizing network is used since it is able to generalize the input vector without a
teacher and robust against noise. The experiments using a real mobile robot were made for rooms both
with and without obstacles, and we verified the utility of our approach. We currently develop a method to
identify rooms with a part of wall-following.

References

[1] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, “An efficiently com-
putable metric for comparing polygonal shapes,” IEEE Transaction on Pattern Analysis and Machine
Intelligence, vol. 13, no. 3, pp. 209-216, 1991.

[2] R.D. Berns and U. Zachmann, “Reinforcement learning for the control of an autonomous mobile robot,”
in 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1808-1815, 1992.

[3] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE Transaction on Robotics and
Automation, vol. 2, no. 1, pp. 1423, 1986.

[4] J. L. Crowly, “Navigation of an intelligent mobile robot,” IEEE Transaction on Robotics and Automation,
vol. 1, no. 1, pp. 31-41, 1985.

[5] T. Kohonen, Self-Organization and Associative Memory. Springer-Verlag, 1989.

[6] U. Nehmzow and T. Smithers, “Map-building using self-organizing networks in really useful robots,”
in Proceedings of the First International Conference on Simulation of Adaptive Behavior, pp. 152—159,
1991.

