Controlling Deliberation with the Success Probability
in a Dynamic Environment

Seiji Yamada

Interdisciplinary Graduate School of Science and Engineering
Tokyo Institute of Technology
4259 Nagatsuda, Midori-ku, Yokohama, Kanagawa 226, JAPAN
E-mail: yamada@ymd.dis.titech.ac.jp

Abstract

This paper describes a novel method to inter-
leave planning with execution in a dynamic en-
vironment. Though, in such planning, it is very
important to control deliberation: to determine
the timing for interleaving them, few research has
been done. To cope with this problem, we pro-
pose a method to determine the interleave timing
with the success probability, SP, that a plan will
be successfully executed in an environment. We
also developed a method to compute it efficiently
with Bayesian networks and implemented SZP
system. The system stops planning when the lo-
cally optimal plan’s SP falls below an execution
threshold, and executes the plan. Since SP de-
pends on dynamics of an environment, a system
does reactive behavior in a very dynamic environ-
ment, and becomes deliberative in a static one.
We made experiments in Tileworld by changing
dynamics and observation costs. As a result, we
found the optimal threshold between reactivity
and deliberation in some problem classes. Fur-
thermore we found out the optimal threshold is
robust against the change of dynamics and obser-
vation cost, and one of the classes in which STP
works well is that the dynamics itself changes.

Introduction

To select an action for an agent in a dynamic environ-
ment, reactive planning recently has become a signif-
icant topic in artificial intelligence and robotics (Agre
& Chapman 1987)(Brooks 1986) (Georgeff & Lansky
1987). Some researchers argue no planning is neces-
sary to intelligent behavior. However, we obviously re-
quire planning for more intelligent behavior including
prediction, and need to integrate reactivity with de-
liberation. In this context, there is a significant issue:
how to control deliberation in a dynamic environment.
Unfortunately we have few promising solutions.

In this paper, we propose a novel method to inter-
leave planning with execution in a dynamic environ-
ment. For controlling deliberation: determining the
timing to switch planning to execution, a system uses
the success probability, SP that it successfully exe-
cutes a plan in an environment. A plan is represented

with a Bayesian network, and we have developed a
method to compute SP efficiently. Since SP depends
on dynamics of an environment, our system does reac-
tive behavior in a very dynamic environment, and be-
comes deliberative in a static one. Thus our approach
integrates reactivity with deliberation depending on
dynamics of an environment, and gives a solution to
the above issue.

We implemented the STP system for evaluating our
approach, and made various experiments in the simpli-
fied Tileworld by changing dynamics and observation
costs. As a result, we found the optimal threshold ex-
ists between reactivity and deliberation in some prob-
lem classes. Furthermore we found out the optimal
threshold is independent of the change of dynamics
and observation cost, and one of the classes in which
SZIP works well is that the dynamics itself changes.

Elegant studies have been done on learning an op-
timal policy with time constraints in stochastic au-
tomata, and the envelop was proposed to speedup the
learning (Dean et al. 1993b)(Dean et al. 1993a).
Furthermore the agent does deliberation scheduling
for assigning the computational resource to mak-
ing envelopes and optimizing a policy (Dean et al.
1993b)(Dean et al. 1993a). However no goal changes
in an environment, and the time constraints are ex-
plicitly given to an agent. In a Tileworld where STP
is evaluated, goals constantly change and no explicit
time constraint is given. Since the time constraints
exist implicitly in an environment, an agent has to es-
timate them with observation.

Though McDermott first proposed the interleave
planning (McDermott 1978), he did not describe any
method to determine the timing of interleaving. Pol-
lack made experiments in a Tileworld for investigat-
ing an IRMA model (Pollack & Ringuette 1990), and
Kinny studied the relation between commitment and
dynamics (Kinny & Georgeff 1991)(Kinny, Georgeff, &
Hendler 1992). Unfortunately they did not deal with
controlling deliberation. Boddy proposed the anytime
algorithm which returns better answer as time passes
(Boddy & Dean 1989). However they focused on a
time restriction, and did not directly deal with envi-

ronment dynamics. Subsumption architecture (Brooks
1986) tried to integrates reactivity with deliberation.
Unfortunately it did not provide a general procedure to
determine when a high-level process subsumed the low-
level ones. Drummond’s goal satisfaction probability
(Drummond & Bresina 1990) is similar to ours. How-
ever the operators are too simple to represent complex
causality.

Kirman investigated the prediction of real-time plan-
ner performance by domain characterization (Kirman
1994). Our work of characterizing the class in which
STIP works well is concerned with his study. However,
since his framework is defined on the Markov decision
process and our domain including a Tileworld may not
satisfy the Markov property, we consider that his ap-
proach is not straightforwardly applied to our domain.

Our study is also concerned with real-time search.
RTA* (Korf 1990) is real time search which interleaves
planning with execution. Though RTA* is constant-
time planning, dynamics was ignored and no method
to determine the interleave timing. DTA* (Russell &
Wefald 1991) is a decision-theoretic search algorithm
interleaving planning with actions. It control delib-
eration by estimating the possibility that the further
search may overrule the current decision. In contrast
with DTA*, STP estimates the possibility that the cur-
rent plan execution will be success. Furthermore DTA*
dose not do modeling an environment. Ishida ap-
plied deliberation to improve the Moving Target Search
(Ishida 1992). When an agent gets caught in the local
minima in the utility function, it begins deliberation
for escaping. The criterion for switching reactivity to
deliberation is far different from SZP, and no dealing
with dynamics.

Interleaving planning
with execution using SP

What is a criterion for determining the timing to switch
planning to execution in a dynamic environment? In
a very dynamic environment, we should switch them
in short intervals. In contrast, the intervals should be
longer in a more static environment. Thus we argue
that “When the success possibility of a plan execution
keeps high, planning should be continued. The planning
1s stopped and the plan is executed when the possibility
falls below a certain value”. We call the success prob-
ability SP, and a certain value an ezecution threshold.
We developed a planning procedure based on the above
claim, and call it STP (Success probability-based In-
terleave Planning).

A domain

First we define a dynamic environment. The prob-
lem definition is generalized from real-time knowledge-
based systems (Laffy et al. 1988) and the simplified
Tileworld (Kinny & Georgeff 1991).

Definition 1 (a dynamic environment)

A dynamic environment where a SZP agent acts is
a problem space where goals appear and disappear as
time passes. Each goal G; has value V; and a STP
agent repeatedly tries to achieve a goal before it dis-
appears and obtains the value. The agent’s purpose is
to get as high total value as possible. O

Next we define operators and plans used in STP.
Note that STP uses a single operator, called a goal
operator, for planning. In the followings, +P and —P
mean a true and a negation value of a propositional
variable P. =P means negation of P.

Definition 2 (a goal-operator and plans) The
goal-operator O achieves a goal and gets the value. It
is a STRIPS-like operator consisting of a cond-list C, a
delete-list D and an add-list A. A; of O; includes a suc-
cess literal s; which means obtaining the value of O;’s
goal. The operator also has an ezecution-time function
et(O) which returns the time taken for executing it. A
plan is a sequence of instantiated goal-operators, [Oq,
.., Oy)] describing order of goals to be achieved. A lit-
eral L in C;, D;, A; of O; are characterized with Lc,,
Lp,, Ly,. They are called a cond-literal, a delete-literal
and an add-literal . |

Concrete methods for executing a goal-operator like
path-planning are described depending on a domain
and given as input. In SZP, deliberation means plan-
ning with goal-operators: scheduling an optimal goal
order to be achieve. Reactivity means reflective action
of an agent without such scheduling.

SZP: Interleave planning with SP

A STP agent consists of an observer, an environment
modeler, a STP planner and a plan executor as shown
in Fig.1. An observer constantly obtains data from an
environment parallel to other modules, and gives the
state descriptions (literals) to an environment modeler
and a SZPplanner. Using them, an environment mod-
eler estimates the persistence probabilities, and gives
them to SZP planner. The SZP planner obtains state
descriptions from an observer as an initial state, and
generates a plan.

N
A
B
A
A
A
A

%
A
K
P

AT
AR
AR,

A
9
b
N

S

S

R,

4%
N
K
~
oy
Vi

o,
b

AN

AR
NGNS

AN

s

NN,

NN

NN

VA
A
Fy
A
A
a
A
A
A
Fy
VA
A
Fy
VA

2
AR

2
o

%

XA
,
R

v
v

Figure 1 A SZP agent

The detailed SZP procedure is shown in Fig.2. The

basic strategy of planning is forward beam search with

an evaluation function: ezpected value. First a STP
system obtains initial states from an observer (Obser-
vation in Fig.2), and gets the persistence probabilities
from an environment modeler (Getting environment
structure in Fig.2). Next the planner applies goal-
operators to the current state, and expands all new
states. At every depth of planning, the planner com-
putes SP and the expected values of all the expanded
plans; and selects w plans with the highest expected
values, where w is width of beam search.

A procedure SIP(G, w, 7))
(G: agodl state,w : abeam width, = : an execution threshold)
whiletrue do
begin
Observation;
Getting environment structure;
CS < {(the observed state, [1)} ;

P<I[I % CSisaset of sp-pair: (Sate, Plan).

MSP < 2;

whileMSP > 7 A Pisnot acomplete planin CS do
begin

NS <« dl sp-pairs expanded from CS
with operator applications;
Computing SP and expected values for NS,
CS < w sp-pairs with high expected valuesin NS,
MSP <« the success probability of the plan P
with the maximum expected valuein CS
end
[Olr S On] <P)
i <1
while i #n +1 atheliteral s of O; _; isachieved do
begin
executing O; ;
i <—i+l
end
end

Figure 2 A STIP procedure

If SP of an (locally) optimal plan which has the
highest expected value falls below an execution thresh-
old or any complete plan is generated, SZP will stop
planning and execute the optimal plan. If not, the
selected w states will be expanded, and planning will
start again.

The plan executor executes operators in order of a
plan until any execution fails or all of them are suc-
cessfully executed. The above cycle is repeated. The
complete plan includes all of the observed goals, and
the partial plan is not complete one. Forward chaining
guarantees that any partial plan is executable in an
initial state, and beam search reduces a search space.
w and an execution threshold are given to a system as
input. This procedure realizes our claim.

Planning depth is controlled by changing an execu-
tion threshold 7 € [0, 1]. When 7 is high, planning
depth becomes short and the behavior becomes reac-
tive, whereas when it is low, the planning depth is long
and the behavior becomes deliberative. For example,

Fig.3 shows the behavior of the optimal plan’s SP as
the plan grows. When an execution threshold is 0.8,
the plan is executed at 2 steps, and if it is 0.3, the
execution is done at 6 steps.

o
2]

o
»

Success probability
5
T
/
1

I
)

0 i
01234567
Plan length

Figure 3 SP and an execution threshold

The success probability of a plan

We define the success of an operator execution, a plan
execution and an expected value. In the followings,
Pr(A, B) means Pr(A A B).

Definition 3 (success of operator execution)

An execution of a goal-operator O; is success iff the
0,’s success literal s; becomes true in an environment
after the execution. A proposition S; means success of
0,’s execution. O

Definition 4 (success probability) A plan execu-
tion is success iff all executions of operators in a plan

are success: S1 A --- A S, becomes true after a plan
[O1,. ..,0,] is executed. Pr(+S1, ..., +S,) is a success
probability SP of a plan. O

Note that Def. 4 is available for both a complete plan
and a partial plan. With an execution procedure in
Fig. 2, we define an expected value of a plan.

Definition 5 (expected value of a plan) An ez-
pected value E[V] of a plan [Oy, ..., O,] is Pr(+S51)-V;
+ Pr(+517+52)vr2 + -+ Pr(+517 ey +Sn)Vn)
where V; is the value of O;’s goal. d

The plan Bayesian networks

For representing probabilistic causality between events
and computing the success probability, we introduce
the plan Bayesian network.

Definition 6 (temporal proposition) <L,t> is a
temporal proposition that means a literal L is true at
a time t in an environment. O

Definition 7 (causal relation and time points)

If Le; is Ly, added by O; in a plan, there will be
a causal relation Ly, < Lc;. For plan [0y, ..., O], to
is an ezecution start time of Oy, t; = to+ Y, _, et(Oy)
is an ezecution finish time of O;, and t(L) is a function
returning the time when the observer observed that a
literal L became true in an environment. O

STP needs the following input probabilities.
Definition 8 (input probabilities)
o Effect probability, E-Pr(0O;,L): A probability that

an O;’s add-literal L becomes true in an environment
after executing O;. This means the certainty of the
operator’s effect.

e Observation probability, O-Pr(L): A probability
that an observed literal L was really true in an en-
vironment. This means the certainty of information
obtained by the observer.

e Persistence probability, P-Pr(L,T): A probability
that a literal L is yet true when the time T has
passed from when it became true in an environment.
This means the degree of the change in an environ-
ment. O

Using a plan, time points and above input probabil-
ities, we completely construct the plan Bayesian net-
work, PBN. PBN is described with a Bayesian net-
work (Pearl 1988) widely used for representing proba-
bilistic causality.

Next we explain how to construct the PBN.
In the followings, V, FE are sets of nodes and
edges, and e(vy,v2) € FE stands for a directed
edge v1 — wvs. BEL(x) is a vector (Pr(+zle),
Pr(—zle)) (e is conjunction of evidences), and
a conditional probability assigned to e(z,y) is

_ [Pr(+y|+2) Pr(—y|+=)
My, = < PT(-l-yI —x) Pr(—yl —) > A propo-
sition Ob(L,t) means an observation that a literal L
became true at a time point ¢, and Ez(O) means that
an goal-operator O is executable in an environment.
The time point ¢; and ¢(L) were described in Def. 7.

Definition 9 (plan Bayesian network) The plan
Bayesian network, PBN, of a plan [Oy, ..., O,] is
a directed acyclic graph consisting of V', E' and M,
in the followings, where 1 < i < n.

e V and E:

(ezecution-node): (Ex(0;),ti_1) € V.

(cond-node): (Le, tic) €V, e({Le,,ti1),
<E$(Oi),ti,1>) € E.

(add-node): (La,,t;) € V, e({Ex(0;),ti1),
(La;»ti)) € E.

(delete-node): (—Lp,,t;) € V, e({(Ex(0;),ti—1),
(-Lp,,t:)) € E.

(observation-node): If (L,t;_;) was observed, then
(Ob(L),t(L)) € V and e({Ob(L),t(L)), (L,t;_1)).
(relation-edge): If L, < L¢, exists, then e((La, ,t;),
(Lc,,tj—1)) € E. If Lp, < —L¢, exists, then
e(<_‘LDi;ti>, <—|Lcj,tj71>) e FE.

e Conditional probabilities:

(observation-pr): BEL({Ob(L), t(L))) = (O-Pr(L),
1—0-Pr(L)).

(effect-pr): If z = (Ex(0;),t;—1) and y is the child
node of z, then

M (E—PrE)Oi,L) 1 —E-Pl'l"(oi:L))

ylz

(persistence-pr): If z = (La,,T1) or (Ob(L), Ty), and
Yy = <LC].,T2>, then
M, _(P'PT(L,TQ -T) 1—-P-Pr(L,T,— Tl))
T 0 1 :

Y

(cond-pr): If an execution-node has cond-nodes
Ciy. - +,Cm, then

1 if Ao Ac
Pr(+Ez|ci,...,cm) = { 0 t)t}_:_ecrlwise Cm

0 if A---Ncp,
Pr(-Ealer,.oen)={ § biflie " - B

We use two assumptions for the above definitions.

A1: Cond-nodes and add-nodes of the same operator
are mutually probabilistic independent.

A2: Execution-node is true iff all of its cond-nodes
are true.

Though the assumptions may slightly restrict rep-
resentation power of PBN, they make the com-
putation of SP very efficient as mentioned in
next section. Fig.4 shows a plan Bayesian net-
work constructed from a plan P = [0, Os, Oj]

= [([aCNbClL[CD1]7[dA1])v ([dC27_'eCz]7 Hv[fAz])v
([deys fos, 7 ees)s 11, [945])]- The causal relation is {

dA1 < dCs: Cp; = 7CCy, fAz = sz }

(Ob(ac,),t(ag,)) (Ob(kx,), t(bc,)

(ac,,to) (be,,to)

T~ —

(EX(Q),to)

(da i) (Ob(—€,), t(—€c,))
X(de) (et
TN EO)

(fa,ta)

v
<dc3,t2> ¢ fC31t2> <—|Cc3,tz>

\(Ex(é),m/

(On, 1)

(—=Co, 1)

Figure 4 The plan Bayesian network

Computing the success probability

Using a temporal proposition, the success of operator
execution, S; in Def. 4, is described as <si,ti>. Thus,
with Def.3 and Def. 4, we describe SP of executing a
plan P =[Oy, ..., O,] at time point tq as SP(P, ty) =
Pr(+<51,t1>, . +<sn, >) The tg is the start time
point to execute a plan.

SP(P,tg) is expanded in the followings. Equation
(1) is obtained with a chain rule, where e; = +<51, t1>
A --- A +(s;,t;). Equation (2) and (3) are obtained
from a method developed in (Pearl 1988) under Al
and A2. Describing the essence of the derivation, as
computing Pr(+ <sz, > | +<51,t1> +<si 1tz 1>)
the condition events +<51,t1>, .. +<51 15t 1> block
all of the relevant loops and make the PBN singly-
connected. Consequently we can straightforward apply
an efficient and exact method (Pearl 1988) to compute

SP.
SP(P,t,)

pr(+<sl,t1> R C)

HPT +(si,ti)]ei1) (1)

Pr(+ <s“ >|ez 1)

=E-Pr(0;, +(si, t:))[[Pr(+
LeC;

Pr(+(Lc,,ti-1)lei 1)

+{Lc, ti—1)lei—1)(2)

P—PT(L, tifl - th) (a)
{E-PT(Oh,L) - P-Pr(L,t;_1 —t,) (b) (3)
O-Pr(L) - P-Pr(L,t;—1 — tp) (c)

(a) ~ (c) in equation (3) are in the followings, where
N is a parent node of <Lci,ti,1> and t, is the time
point.

(a): N is a node of a literal s of (Ex(O1),to) ~
<E:E(Oi_1),ti_2> or any cond-node of <E:E(Ol),t0> ~
<E:E(Oi_1),ti_2> is a brother node of <LC,¢,ti—1>-

(b): Not (a), and N is an add-node or a delete-node
of E'x(Oh, th)

(c): Not (a), and N is an observation-node.

With equation (1), (2), and (3), SP is computed
incrementally as growing plans, and the time complex-
ity for one step of a plan is constant. Thus, the time
complexity to compute SP of a n step plan is O(n).
In contrast that the complexity for updating probabili-
ties in Bayesian networks is generally NP-hard (Cooper
1990), computing SP on PBN is very efficient. Fur-
thermore, since input probabilities depend on dynam-
ics and an observation cost, STP is able to deal with
them.

Experiments in the Tileworld

We made experiments in the simplified Tileworld
(Kinny & Georgeff 1991), a standard test-bed for a dy-
namic environment (Pollack & Ringuette 1990). The

simplified Tileworld is a chess-board-like grid in which
there are agents, obstacles and holes (see Fig.5). An
agent can move up, down, left or right, one cell at a
time. An obstacle is a immovable cell. A hole (a goal)
is a cell with a score (a value). By moving to the hole,
an agent obtains the score, and then the hole disap-
pears. Holes appears or disappear as time passes.

@:Anagent
:Ahole

D : An obstacle

@ ®

Figure 5 A simplified Tileworld

One of the purposes of the experiments is to find out
the class of problems in which STP outperforms both a
reactive system and a deliberative one. In other words,
it is to find out the problems in which the optimal
execution threshold exists neither near to 0 nor 1.

The another purpose is to characterize the classes in
which S7Pworks well. Since SZP estimates the degree
of the dynamics on-line, it is adaptive to the change of
dynamics. Thus we attempt to characterize the class in
which SZP outperforms the interleave planning which
is not adaptive.

There is few experiments for examining the trade-
off between deliberation and reactivity, and the adap-
tation of planning to the change of dynamics. Thus
the experimental results are significant for designing
an agent in a dynamic domain.

Parameters and procedure

We characterize the simplified Tileworld using the fol-
lowing properties: (1) Dynamics of an environment,
(2) Uncertainty of actions including observations, (3)
Costs for planning and observations. We selected nec-
essary parameters for the properties and gave the de-
fault setting.

Parameters to be examined:

e Dynamics, d = 1, 2, ..., 8 The rate at which the
world changes for an agent.

e observation cost, c: The time taken for an observa-
tion.

e FEzecution threshold: 7 =0,0.1, ..., 1
Agent parameters:
o Ezecution time for a single moving: 2 (fixed)

e A goal-operators: This describes a move from a hole
to other holes. For path planning, an agent uses hill-
climbing with Manhattan distance as an evaluation
function.

o Width of beam search, w = 4. We fixed it since no
significant change was observed by changing it.

o Input probabilities: Observation probability is 1 — u,
and effect probability that an agent moves suc-
cessfully for p Manhattan distance is (1 — u)P.
We use a simple persistence probability function,

1 (t<b)

rt—rb+1 (b<t<b+1) de-

0 (b+ 1<)

rived from hole life-expectancy’.

P-Pr(L,t) =

o Uncertainty, w = 0.01: The probability u that one-
step moving and an observation fails. Failure of mov-
ing means no moving. If an observation fails, the ob-
ject is observed randomly in one of the four neighbor
(up, down, left and right) cells on the true position.

Environment parameters:
e Grid size: 20 x 20. No obstacle.

e Hole scores: Chosen from a uniform distribution for
[60, 100].

e Hole life-expectancy: The interval between an ap-
pearance and a natural disappearance of a hole.
Chosen from a uniform distribution for [1200, 5200].

e Hole gestation time: The interval between the ap-
pearances of successive holes. Chosen from a uni-
form distribution [100, 300].

o Initial holes’ positions: The initial holes positions
are randomly set.

Since the complexity for computing SP for one step
is constant, we defined a unit of agent-time as the time
for expanding a node in planning. The ¢ time-units
are taken by one observation, and d environment-time
passes as one agent-time passes. For simplicity, we as-
sumed an agent knows true distance to a target hole,
thus no obstacle was necessary. An agent actually

moves using hill-climbing. We used the scoring rate
obtained score as
the mazimum possible score it could have achieved

performance measurement. Through all experiments,
a terminal condition was that the standard deviation
of e converges to 0.01, and five results of the identical
parameters were averaged. In the following, problems
are described with the difference from default setting.

g =

Exp-A: Changing dynamics and an
observation cost

We investigated influence of dynamics and an observa-
tion cost on an agent’s performance, and attempted to
find out the optimal execution threshold was between
0 and 1: the most deliberative and the most reactive.
For simplicity, we gave persistence probabilities to a
SIP agent through these experiment. The environ-
ment modeler of STP will be implemented in the next
section.

'[b,b + 1] is equal to the range of hole life-expectancy,
[1200, 5200], mentioned later.

Fist we changed an observation cost ¢ for 5, 50, 100
and 200. Due to space constraints, the typical experi-
mental result (¢ = 100) is shown in Fig.6. The results
for ¢ = 5, 50, 200 were almost similar to Fig.6. The
zr-axis and y-axis stand for an execution threshold 7
and a scoring rate ¢ respectively. Through four obser-
vation costs, it is natural that a scoring rate decreases
as dynamic increases. In Fig.6, when an environment
is static (d = 1), the scoring rates are high indepen-
dent of an execution threshold. However, for d = 2,
3 and 4, the scoring rates near to 0 and 1 decrease.
Consequently we found out that the optimal execution
threshold existed between reactivity and deliberation
in some problems. Note that there is a single peak of
a scoring rate in most of the problems. This is impor-
tant for a hill-climbing method to search the optimal
execution threshold. We observed these properties also
in other results.

—e—d=1 —»—d=4 ——d=7
——d=2 —o—d=5 —m—d=8
—A—d=3 —A—d=6

A scoring rate

-

I T B]
0O 02 04 06 08 1
An execution threshold

0

Figure 6 Changing dynamics (¢ = 100)

For ¢ = 50, 100 and 200, there are the peaks between
0 and 1, and the rank correlation coefficients of any
different dynamics pair in the same observation cost
are positive, 0.2~0.5. Hence we consider the optimal
execution thresholds are robust against the change of
dynamics. Furthermore, since the peaks are around 0.7
in Fig.7 showing scoring rates averaged over dynamics,
it is robust also against the change of an observation
cost. These properties derives from SP is computed
depending on dynamics and an observation cost.

The environment modeler

We implemented the environment modeler for ad-
vanced experiments. In SZP, the environment mod-
eling means the estimation of persistence probabilities
with data from the observer. The data include the ob-
served life-expectancies. The persistence probabilities

—e—Cc=5 —A—c=100
——Cc=50 —¢—c=200

A scoring rate

.

0O 02 04 06 08 1
An execution threshold

Figure 7 Averaged scoring rates to dynamics

significantly depend on dynamics of an environment.
A following equations (Dean & Kanazawa 1989) were
used for estimating d and r of P-Pr(L,t) described ear-
lier, and the modeling can be constantly done parallel
to planning, execution and observation. The input is
U: a set of last n samples of observed life-expectancies.
The modeler is able to update the estimated value be-
cause the sample is constantly updated. We assume
the agent knows the model of persistence probabilities
and can use a parametric method. If the assumption
is not hold, the error of estimation will increase.

d(U) = the minimum of U

- 0.5
U) =
r(U) the average of U — d(U)

Exp-B: Adaptation to the change of
dynamics

SIP is adaptive to the change of dynamics because of
the environment modeler. Hence we were interested
in comparing SZP with fixed-depth planning which
stops the planning at the given depth. Though the
fixed-depth planning can control deliberation, it is not
adaptive to the change of dynamics because of fixed
depth. The same parameters of Exp-A were used, ex-
cept changing the fixed-depth from 1 to 10 instead of
an execution threshold. This fixed-depth planner is
same to SIP, except that the planning depth is fixed.

The results for ¢ = 100 is shown in Fig.8. Compar-
ing with Fig.6, the maximum scoring rates are almost
equal to ones in Fig.6. This is showed also in other c.
Unlike the fixed depth planning, SZP can change the
plan length on-line even with a fixed execution thresh-
old. Unfortunately, the advantage is not shown?.

We consider since the causality between goals is too
simple, S P is smoothly decreased and the interleave timing
of two planning are not much different.

—e—d=1 —«—d=4 ——d=7
—3—d=2 —0o—d=5 —m—d=8
——d=3 ——d=6

1

o
™

—

o
o

’
Y
/.

A scoring rate

o
N
xQ

o

©
N

L !
1234567 8 9 10
Fixed depth

Figure 8 Fixed-depth planning

We expected that the optimal threshold of STP
would be more robust than the optimal depth of fixed-
depth planning. It is because fixed-depth planning
does not deal with dynamics, and it may change the
optimal depth widely depending on the change of dy-
namics. Fig.9 shows the differences between ¢ at 7 =
0.6 or depth = 6 (which are the optimal conditions at d
= 3) and the maximum ¢, at d = 3, 4, 5 and 6. Smaller
the difference is, more robust the system is. Thus we
see STP is more robust than fixed-depth planning.

[—e—SP-difft —o— Fixed-diff |

g 02 T
=} H
£ 015
é l — \ca
2 o1
5
2 005F 3
% / \1i
0
1
0_005
3 4 5 6

Dynamics

Figure 9 Robustness of STP

Next, we investigated the adaptation of STP to the
change of dynamics. Using SZP with the environment
modeler and fixed-depth planner, we made the experi-
ment in which dynamics itself changed. The dynamics
was initially three, changed to four at 10000 agent-
time, and to five at 20000 agent-time. The sample
number n of a modeler was set 20 and ¢ = 100. The
results are shown in Fig.10. Though the fixed-depth

planner outperformed SZP until 10000 time, after dy-
namics changed twice, SZP is better than the fixed-
depth because of its adaptation to the change of dy-
namics. Thus we consider one of the classes in which
SIP works well is the environment where dynamics
itself changes.

L e — T T]
08: — s 1
“t //7% Fixed depth | 1
06

A scoring rate

]

10000 20000 30000
Agent time

o

o o
Oul\j"'h"'
. %7:_\.;

Figure 10 Adaptation to the change of dynamics

Conclusion

We proposed a STP method for controlling delibera-
tion in a dynamic environment. SZP computes the
success probability SP that a plan will be executed
successfully, and stops planning when the SP falls be-
low an execution threshold. A plan is transformed into
a plan Bayesian network, and the SP is efficiently com-
puted on it. We made experiments in the simplified
Tileworld for evaluating SZP. As a result, we found
out STP worked better than a reactive and a deliber-
ative system in some problems. Furthermore we found
out the optimal threshold is robust, and one of good
classes for STP is where dynamics itself changes. How-
ever STP needs to deal with replanning, and we need
systematic characterization, like (Kirman 1994), of the
classes where STP works well.

Acknowledgments

Many thanks to Yoshinori Isoda at NTT Human In-
terface Laboratories for useful discussion.

References

Agre, P. E., and Chapman, D. 1987. Pengi: A im-
plementation of a theory of activity. In Proceedings
of the Sizth National Conference on Artificial Intelli-
gence, 268-272.

Boddy, M., and Dean, T. 1989. Solving time-
dependent planning problems. In Proceedings of the
FEleventh International Joint Conference on Artificial
Intelligence, 979-984.

Brooks, R. A. 1986. A robust layered control system
for a mobile robot. IEEE Transaction on Robotics
and Automation 2(1):14-23.

Cooper, G. F. 1990. The computational complexity of
probabilistic inference using bayesian belief networks.
Artificial Intelligence 42:393-405.

Dean, T., and Kanazawa, K. 1989. Persistence and
probabilistic projection. IEEFE Transaction on Sys-
tems, Man, and Cybernetics 19(3):374-385.

Dean, T.; Kaelbling, J. K.; Kirman, J.; and Nichol-
son, A. 1993a. Deliberation scheduling for time-
critical sequential decision making. In Proceedings of
the Ninth Conference on Uncertainty in Artificial In-
telligence, 309-316.

Dean, T.; Kaelbling, J. K.; Kirman, J.; and Nichol-
son, A. 1993b. Planning with deadlines in stochas-
tic domains. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, 574-579.

Drummond, M., and Bresina, J. 1990. Anytime syn-
thetic projection: Maximizing the probability of goal
satisfaction. In Proceedings of the Fighth National
Conference on Artificial Intelligence, 138—144.

Georgeff, M. P., and Lansky, A. L. 1987. Reactive
reasoning and planning. In Proceedings of the Sizth
National Conference on Artificial Intelligence, 677—
682.

Ishida, T. 1992. Moving target search with intelli-
gence. In Proceedings of the Tenth National Confer-
ence on Artificial Intelligence, 525-532.

Kinny, D., and Georgeff, M. 1991. Commitment and
effectiveness of situated agents. In Proceedings of the
Twelfth International Joint Conference on Artificial
Intelligence, 82—88.

Kinny, D.; Georgeff, M.; and Hendler, J. 1992. Ex-
periments in optimal sensing for situated agent. In
Proceedings of the Second Pacific Rim International
Conference on Artificial Intelligence, 1176-1182.

Kirman, J. 1994. Predicting Real-Time Planner Per-
formance by Domain Characterization. Ph.D. Disser-
tation, Brown University.

Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42:189-211.

Lafty, T. J.; Cox, P. A.; Schmidt, J. L.; Kao, S. M,;
and Read, J. Y. 1988. Real-time knowledge-based
systems. In Al magazine, volume 9. 27-45.

McDermott, D. 1978. Planning and action. Cognitive
Science 2:77-110.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann.

Pollack, M. E.; and Ringuette, M. 1990. Introducing
the tileworld: Experimentally evaluating agent archi-
tectures. In Proceedings of the Eighth National Con-
ference on Artificial Intelligence, 183—189.

Russell, S., and Wefald, E. 1991. Do the Right Thing.
MIT Press.

